Advertisement

Carbohydrates pp 169-190 | Cite as

Nucleophilic Displacement and the Neighboring Group Participation

  • Momcilo Miljković
Chapter

Abstract

The nucleophilic substitution reaction of the type SN2 (bimolecular nucleophilic substitution) proceeds with formation, in a single step, of the trigonal bipyramidal pentacovalent carbon transition state 2 and results in the inversion of configuration at the reacting carbon atom (the configuration of 3 vs. 1) (Fig. 7.1); it usually follows the second-order kinetics.

Keywords

Sodium Benzoate Neighboring Group Dimethyl Acetal Nucleophilic Displacement Tosyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jary, J.; Capek, K.; Kovar, J., “Amino sugars. II. Preparation of derivatives of methyl 2,3-anhydro-6-deoxy- α -D-mannopyranoside”, Coll. Czech. Chem. Comm. (1964) 29, 930–937Google Scholar
  2. 2.
    Buss, D. H.; Hall, L. D.; Hough, L., “Some nucleophilic substitution reactions of primary and secondary sulphonate esters”, J. Chem. Soc. (1965) 1616–1619Google Scholar
  3. 3.
    Taylor, N. F.; Kent, P. W., “168. Fluorocarbohydrates. Part I. The synthesis of 6- deoxy-6-fluoro- α -D-galactose and 5-deoxy-5-fluoro- αβ -D-ribose”, J. Chem. Soc. (1958) 872–875Google Scholar
  4. 4.
    Reist, E.; Spencer, R. R.; Baker, J. R., “Potential anticancer agents. XXIX. Inversion of a ring carbon of a Glycoside”, J. Org. Chem. (1959) 24, 1618–1619CrossRefGoogle Scholar
  5. 5.
    Hill, J.; Hough, L.; Richardson, A. C. “Replacement of methylsulfonyloxy groups: the conversion of the D-gluco into the D-galacto configuration”, Proc. Chem. Soc. (1963) 314–315Google Scholar
  6. 6.
    Hill, J.; Hough, L.; Richardson, A. C. “Replacement of methanesulfonyloxy groups: the conversion of the D-gluco into the D-galacto configuration”, Proc. Chem. Soc. (1963) 346–347Google Scholar
  7. 7.
    Stevens, C. L.; Glinski, R. P.; Taylor, K. G.; Blumbergs, P.; Sirokman, F., “New Rearrangement of Hexose 4- and 5-O-Sulfonates”, J. Am. Chem. Soc. (1966) 88, 2073– 2074CrossRefGoogle Scholar
  8. 8.
    Hanessian, S., “Ring contraction and epimerization during a displacement reaction of Hexose Sulfonate”, Chem. Commun. (1966) 796–798Google Scholar
  9. 9.
    Hughes, N. A.; Speakman, P. R. H., “Benzoate displacements on 3-O-toluene-p- sulphonyl-D-glucose derivatives; a new synthesis of D-allose”, J. Chem. Soc. (1965) 2236–2239Google Scholar
  10. 10.
    Jeanloz, R. W.; Jeanloz, D. A., “The Solvolysis of Sulfonyl Esters of Methyl α-D- Glucopyranoside and Methyl α-D-Altropyranoside”, J. Am. Chem. Soc. (1958) 80, 5692–5697CrossRefGoogle Scholar
  11. 11.
    Richardson, A. C.; Williams, J. M., “Selective O-acylation of pyranosides”, Chem. Commun. (1965) 104–105Google Scholar
  12. 12.
    Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A., Conformational Analysis, p. 88, Interscience, New York (1965)Google Scholar
  13. 13.
    Nakajima, M.; Shibata, H.; Kitahara, K.; Takashi, S.; Hagesawa, A., “Synthesis of kasuganobiosamine”, Tetrahedron Lett. (1968) 9, 2271–2274Google Scholar
  14. 14.
    Wolfrom, M. L.; Shafizadeh, F.; Armstrong, R. K.; Shen Han, T. M., “Synthesis of amino sugars by reduction of hydrazine derivatives; D- and L-Ribosamine, D- Lyxosamine1-3”, J. Am. Chem. Soc. (1959) 81, 3716–3719CrossRefGoogle Scholar
  15. 15.
    Horton, D.; Wolfrom, M. L.; Thompson, A., “Synthesis of amino sugars by reduction of hydrazine derivatives. 2-Amino-2-deoxy-L-lyxose (L-lyxosamine) hydrochloride”, J. Org. Chem. (1961) 26, 5069–5074CrossRefGoogle Scholar
  16. 16.
    Roth, W.; Pigman, W., “Methyl derivatives of D-Mannosamine”, J. Org. Chem. (1961) 26, 2455–2458CrossRefGoogle Scholar
  17. 17.
    Brimacombe, J. S.; How, M. J., “Pneumococcus type V capsular polysaccharide: characterisation of pneumosamine as 2-amino-2,6-dideoxy-L-talopyranose”, J. Chem. Soc. (1962) 5037–5040Google Scholar
  18. 18.
    Hough, L.; Richardson, A. C., in “Rodd’s Chemistry of Carbon Compounds”, Vol. 1F, Coffey, S. (Ed.), 2nd ed., Elsevier, New York, N. Y., 1967, pp. 222–224 and 403–407Google Scholar
  19. 19.
    Ali, Y.; Richardson, A. C., “Nucleophilic replacement reactions of sulphonates. Part III. The synthesis of derivatives of 2,3,4,6-tetra-amino-2,3,4,6-tetradeoxy-D-galactose and -D-idose”, J. Chem. Soc. C, (1968) 1764–1769Google Scholar
  20. 20.
    Richardson, A. C., “Nucleophilic replacement reactions of sulphonates : Part VI. A summary of steric and polar factors”, Carbohydr. Res. (1969) 10, 395–402CrossRefGoogle Scholar
  21. 21.
    Ball, D. H.; Parrish, F. W., “Sulfonic esters of carbohydrates: Part II”, Advan. Carbohydr. Chem. Biochem. (1969) 24, 139–197CrossRefGoogle Scholar
  22. 22.
    Hough, L.; Richardson, A. C., in “The Carbohydrates, Chemistry and Biochemistry”, Vol. 1A, Pigman, W.; Horton, D. (Eds.), 2nd ed., Academic Press, Inc., New York, N. Y. (1972), p. 143Google Scholar
  23. 23.
    Richardson, A. C., “Nucleophilic replacement reactions of sulfonates: Part VI. A Summarru of steric and polar factors”, Carbohydr. Res. (1969) 10, 395–402CrossRefGoogle Scholar
  24. 24.
    Miljkovic, M.; Gligorijevic, M.; Glisin, Dj., “Steric and electrostatic interactions in reactions of carbohydrates. III. Direct displacement of the C-2 Sulfonate of Methyl 4,6-O-Benzylidene-3-O-methyl-2-O-methylsulfonyl- β -D-gluco- and mannopyranosides”, J. Org. Chem. (1974) 39, 3223–3226CrossRefGoogle Scholar
  25. 25.
    Ishido, Y.; Sakairi, N., “Nucleophilic substitution-reactions at C-2 of methyl 3-O- benzoyl-4,6-O-benzylidene-2-O-(trifluoromethylsulfonyl)-α-D-glucopyranoside”, Carbohydr. Res. (1981) 97, 151–155CrossRefGoogle Scholar
  26. 26.
    Hashimoto, H.; Araki, K.; Saito, Y.; Kawa, M.; Yoshimura, Y., “Preparation of 2- Azido-2-deoxypentose Derivatives”, Bull. Chem. Soc. (Japan) (1986) 59, 3131–3136CrossRefGoogle Scholar
  27. 27.
    Ranganathan, R., Modification of the 2'-position of purine nucleosides: syntheses of 2'-α-substituted-2'-deoxyadenosine analogs”, Tetrahedron Lett. (1977) 1291–1294Google Scholar
  28. 28.
    Vatèle, J-M.; Hanessian, S., in Preparative Carbohydrate Chemistry, Hanessian, S. (Ed.), Marcel Dekker, Inc., New York, 1997, pp.127–149 ( Chapter 7)Google Scholar
  29. 29.
    Ryan, K. J.; Arzoumanian, H.; Acton, E. M.; Goodman, L., “Configurational Inversion within a Furanoside Ring by Anchimerically Assisted Displacement: 5-Deoxy-D- ribose from 5-Deoxy-D-xylose”, J. Am. Chem. Soc. (1964) 86, 2497–2503CrossRefGoogle Scholar
  30. 30.
    Bohme, H.; Sell, K., “Die Hydrolyse halogenierter Äther und Thioäther in Dioxan- Wasser-Gemischen”, Chem. Ber. (1948) 81, 123–130CrossRefGoogle Scholar
  31. 31.
    Cowdrey, W. A.; Hughes, E. D.; Ingold, C. K., “Reaction kinetics and the Walden inversion. Part III. Homogeneous hydrolysis and alcoholysis of -bromopropionic acid, its ester and anion”, J. Chem. Soc. (1937) 1208–1236Google Scholar
  32. 32.
    Ross, S. D., “The role of neighboring nitrogen. Atom in the displacement reaction; rearrangement in the Hydrolysis of 1-Diethylamino-2-chloropropane”, J. Am. Chem. Soc. (1947) 69, 2982–2983CrossRefGoogle Scholar
  33. 33.
    Winstein, S.; Buckles, R. E., “The role of neighboring groups in replacement reactions. I. Retention of configuration in the reaction of some Dihalides and Acetoxyhalides with Silver Acetate”, J. Am. Chem. Soc. (1942) 64, 2780–2786CrossRefGoogle Scholar
  34. 34.
    Winstein, S.; Lindegren, C. R.; Marshall, H.; Ingraham, L. L., “Neighboring Carbon and hydrogen. XIV. Participation in solvolysis of some primary Benzenesulfonates”, J. Am. Chem. Soc. (1953) 75, 147–155CrossRefGoogle Scholar
  35. 35.
    Lemieux, R. U.; Brice, C., “A comparison of the properties of pentaacetates and methyl 1,2-orthoacetates of glucose and mannose”, Can. J. Chem. (1955) 33, 109– 119CrossRefGoogle Scholar
  36. 36.
    Miljkovic, M.; Miljkovic, D.; Jokic, A.; Andrejevic, V.; Davidson, E. A., “Neighboring-group participation in carbohydrate chemistry. II. Neighboring-group participation of the N,N-Diethylamido group in a nucleophilic displacement of a 5- Tosylate”, J. Org. Chem. (1971) 36, 3218–3221CrossRefGoogle Scholar
  37. 37.
    Miljkovic, M.; Davidson, E. A., “An improved synthesis of 1,2-O-Isopropylidene- β - L-idofuranose”, Carbohydr. Res. (1970) 13, 444–446CrossRefGoogle Scholar
  38. 38.
    Miljkovic, M.; Jokic, A.; Davidson, E. A., “Neighboring-group participation in carbohydrate chemistry. Part I. Neighboring -group participation of the 6-O- Benzoyl group in a nucleophilic displacement of a 5-p-Toluenesulfonate”, Carbohydr. Res. (1971) 17, 155–164CrossRefGoogle Scholar
  39. 39.
    Miljkovic, M.; Glisin, Dj.; Gligorijevic, M., “Neighboring-group participation in carbohydrate chemistry. V. Direct evidence for the participation of the β -Trans- Axial Benzoyloxy Group in the Nucleophilic Displacement of Methanesulfonate of Methyl 4, 6-Di-O-benzoyl-3-O-methyl-2-O-methylsulfonyl- β -D-galactopyranoside and Methyl 2,6-Di-O-benzoyl3-O-methyl-4-O-methylsulfonyl- β -D- mannopyranoside”, J. Org. Chem. (1975) 40, 1054–1057CrossRefGoogle Scholar
  40. 40.
    Streitwieser, A., Jr., , “Solvolytic Displacement Reactions”, McGraw-Hill, New York, N. Y. (1962), p. 14Google Scholar
  41. 41.
    Miljkovic, M.; Glisin, Dj., unpublished results; see also Ref. 39Google Scholar
  42. 42.
    Capon, B.; Thacker, D., “Nucleophilic assistance in the acid-catalyzed reactions of acetals and glycosides”, J. Am. Chem. Soc. (1965) 87, 4199–4200CrossRefGoogle Scholar
  43. 43.
    Hughes, N. A.; Speakman, P. R. H., “1,4-Migration of a methoxy group during a benzoate displacement reaction: 4-O-methyl-L-lyxose”, Chem. Commun. (1965) 199–200Google Scholar
  44. 44.
    Gray, G. R.; Hartman, F, C.; Barker, R., “Anchimeric assistance by Benzyloxy groups and the effect of configuration on an intramolecular displacement reaction of the pentitols”, J. Org. Chem. (1965) 30, 2020–2024CrossRefGoogle Scholar
  45. 45.
    Guthrie, R. D.; Murphy, D.; Buss, D. H.; Hough, L.; Richardson, A. C., “Aziridino derivatives of carbohydrates”, Proc. Chem. Soc. (1963) 84Google Scholar
  46. 46.
    Fürst, A.; Plattner, P. A., Proc. Intern. Congr. Pure. Appl. Chem., 12th Congr., New York, 1951, Abstr. Papers, p. 409Google Scholar
  47. 47.
    Goodman, L.; Christensen, J. E., “Potential antiradiation drugs. II. β-Aminomercap tans derived from D-Allose”, J. Am. Chem. Soc. (1961) 83, 3823–3827CrossRefGoogle Scholar
  48. 48.
    Miljkovic, M.; Hagel. P., “Synthesis of Methyl 2-Acetamido-4, 6-di-O-acetyl-3-S- acetyl-2-deoxy-3-thio- α -D-mannopyranoside”, Helv. Chim. Acta (1982) 65, 477–482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations