Carbohydrates pp 143-167 | Cite as

Cyclic Acetals and Ketals

  • Momcilo Miljković


Cyclic and acyclic carbohydrates react with aldehydes and/or ketones, in the presence of catalysts (hard or Lewis acids), to give cyclic acetals and/or ketals (1,3-dioxolanes 3 or 1,3-dioxanes 5, respectively) (Fig. 6.1 ). This reaction is routinely used in carbohydrate chemistry for the protection of hydroxyl groups in a sugar in order to prevent their interference in chemical transformation(s) of other hydroxyl group(s) of that sugar.


Concentrate Sulfuric Acid Zinc Chloride Cyclic Acetal Triphenyl Phosphite Acetal Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barker, S. A.; Bourne, E. J., “Acetals and Ketals of the Tetritols, Pentitols and Hexitols”, Advan. Carbohydr. Chem. (1952) 7, 137–207Google Scholar
  2. 2.
    de Belder, A. N., “Cyclic acetals of the aldoses and aldosides”, Adv. Carbohydr. Chem. (1965) 20, 219–302Google Scholar
  3. 3.
    de Belder, A. N., “Cyclic acetals of the aldoses and aldosides”, Adv. Carbohydr. Chem. Biochem. (1977) 34, 179–241CrossRefGoogle Scholar
  4. 4.
    Brady, R. F., Jr., “Cyclic acetals of Ketoses”, Adv. Carbohydr. Chem. Biochem. (1971) 26, 197–278CrossRefGoogle Scholar
  5. 5.
    Stoddart, J. F., Stereochemistry of Carbohydrates, Willey Interscience, New York (1971) pp. 186–220Google Scholar
  6. 6.
    Hough, L.; Richardson, A. C., in Rodd’s Chemistry of Carbon Compounds, Vol. 1, Part F, Coffey, S. (Ed.), Elsevier, New York, (1967) pp. 32–38 and 351–362Google Scholar
  7. 7.
    Lemieux, R. U. in Molecular Rearrangements, Part II, de Mayo, P. (Ed.), Wiley- Interscience, New York (1963), pp. 723–733Google Scholar
  8. 8.
    Clode, D. M., “Carbohydrate cyclic acetal formation and migration”, Chem. Rev. (1979) 79, 491–513CrossRefGoogle Scholar
  9. 9.
    Adkins, H.; Broderick, A. E., “Hemiacetal formation and the refractive indices and densities of mixtures of certain alcohols and aldehydes”, J. Am. Chem. Soc. (1928) 50, 499–503CrossRefGoogle Scholar
  10. 10.
    Ingold, C. K. Structure and Mechanism in Organic Chemistry, 2nd ed., Cornell University Press, Ithaca, N.Y. (1969) p. 447Google Scholar
  11. 11.
    Salomaa, P.; Kankaanperä, A., “Hydrolysis of 1,3-dioxolane and its alkyl-substituted derivatives. I. Structural factors influencing the rates of hydrolysis of a series of methyl-substituted dioxolanes”, Acta Chem. Scand. (1961) 15, 871–878CrossRefGoogle Scholar
  12. 12.
    Fife, T. H.; Jao, L. K., “Substituent effects in acetal hydrolysis”, J. Org. Chem. (1965) 30, 1492–1495CrossRefGoogle Scholar
  13. 13.
    De Wolfe, R. H.; Ivanetich, K. M.; Perry, N. F., “General acid catalysis in benzophenone ketal hydrolysis”, J. Org. Chem. (1969) 34, 848–854CrossRefGoogle Scholar
  14. 14.
    Collins, P. M., “The kinetics of the acid catalysed hydrolysis of some isopropylidene furanoses”, Tetrahedron (1965) 21, 1809–1815CrossRefGoogle Scholar
  15. 15.
    Cordes, E. H.; Bull, H. G., “Mechanism and catalysis for hydrolysis of acetals, ketals, and ortho esters”, Chem. Rev. (1974) 74, 581–603CrossRefGoogle Scholar
  16. 16.
    For a treatise on this subject, see Lewis and Hammes, “Investigation of rates and mechanism of reaction”, 3d ed. (Vol. 6 of Weissberger, “Techniques of Chemistry”), 2 pts., Wiley, New York, 1974. For a monograph, see Carpenter “Determination of organic reaction mechanisms”, Wiley, New York, 1984Google Scholar
  17. 17.
    Baggett, N.; Duxbury, J. M.; Foster, A. B.; Webber, J. M., “Further observations on the acid-catalysed benzaldehyde-glycerol reaction”, Carbohydr. Res. (1966) 2, 216– 223CrossRefGoogle Scholar
  18. 18.
    Baggett, N.; Foster, A. B.; Webber, J. M.; Lipkin, D.; Philips, B. E., “2’, 3’-O-Benzylidene nucleosides”, Chem. Ind. (London) (1965) 136–137Google Scholar
  19. 19.
    Al-Jeboury, F. S.; Baggett, N.; Foster, A. B.; Webber, J. M., “Observations on cyclic acetal formation and migration”, J. Chem. Soc. Chem. Commun. (1965) 222–224Google Scholar
  20. 20.
    Clode, D. M., Ph.D. Thesis, Birmingham University, 1968Google Scholar
  21. 21.
    Turner, R. B.; Nettleton, D. E.; Perelman, M., “Heats of Hydrogenation. VI. Heats of Hydrogenation of Some Substituted Ethylenes”, J. Am. Chem. Soc. (1958) 80, 1430– 1433CrossRefGoogle Scholar
  22. 22.
    Zervas, L., “Über Benzyliden-glucose und ihre Verwendung zu Synthesen: 1-Benzoyl- glucose”, Berichte (1931) 64, 2289–2296Google Scholar
  23. 23.
    Wood, H. B., Jr.; Diehl, H. W.; Fletcher, H. G. Jr., “1,2:4,6-Di-O-benzylidene-α-D-glucopyranose and Improvements in the Preparation of 4,6-O-Benzylidene-D-glucopyranose”, J. Am. Chem. Soc. (1957) 79, 1986–1988CrossRefGoogle Scholar
  24. 24.
    Fletcher, H. G., Jr., “4, 6-Benzylidene Derivatives”, in Methods in Carbohydrates Chemistry, Vol. II, Academic Press, New York (1963), pp. 307–308Google Scholar
  25. 25.
    Richtmyer, N. K., “Methyl 4, 6-O-Benzylidene-α-D-glucopyranoside”, in Methods in Carbohydrates Chemistry, Vol. I, Academic Press, New York (1962), p. 108Google Scholar
  26. 26.
    Zinner, H.; Thielebeule,W., “Derivatives of sugar dithioacetals. XXIII. Acyl and benzylidene derivatives of D-galacturonic acid dialkyl dithioacetals”, Chem. Ber. (1960) 93, 2791–2803CrossRefGoogle Scholar
  27. 27.
    Pacák, J.; Cerny, M., “1,2:3,4-Di-O-benzylidene-D-galactopyranose”, Collect. Czech. Chem. Commun. (1961) 26, 2212–2216Google Scholar
  28. 28.
    Pacák, J.; Černý, M., “Preparation and structure of 4,6-O-benzylidene-D-galactopyranose”, Collect Czech. Chem. Commun. (1963) 28, 541–544Google Scholar
  29. 29.
    Brigl, P.; Grüner, H., “Kohlenhydrate, XIII. Mitteil.: Neue Benzal- und Benzoyl- Derivate der Glucose”, Berichte(1932) 65, 1428–1434Google Scholar
  30. 30.
    Zervas, L.; Sessler, P., “Synthese von d-Glucuronsäure”, Berichte (1933) 66, 1326–1329Google Scholar
  31. 31.
    Levene, P. A.; Raymond, A. L., “Über die 1.2-Monoaceton-3.5-benzal- und die 1.2-Monoaceton-5.6-benzal-glucose”, Berichte (1933) 66, 384–386Google Scholar
  32. 32.
    Helferich, B.; Appel, H., “Über Verbindungen von Kohlehydraten mit Acetaldehyd: Äthyliden-glucose”, Berichte (1931) 64, 1841–1847Google Scholar
  33. 33.
    Sutra, R., “X-ray diffraction spectra of different varieties of starch”, Bull. Soc. Chim. (France) (1942) 9, 795–797Google Scholar
  34. 34.
    Hockett, R. C.; Collins, D. V.; Scattergood, A., “The preparation of 4,6-ethylidene-D-glucopyranose from sucrose and its hydrogenation to 4,6-Ethylidene-D-sorbitol”, J. Am. Chem. Soc. (1951) 73, 599–601CrossRefGoogle Scholar
  35. 35.
    Rappoport, D. A.; Hassid, W. Z., “Preparation of L-Arabinose-1-C14”, J. Am. Chem. Soc. (1951) 73, 5524–5525CrossRefGoogle Scholar
  36. 36.
    Barker, R.; MacDonald, D. L., “Some oxidation and reduction products of 2,4-O- Ethylidene-D-erythrose”, J. Am. Chem. Soc. (1960) 82, 2301–2303CrossRefGoogle Scholar
  37. 37.
    Schmidt, O. Th., “Isopropylidene Derivatives”. in Methods in Carbohydrates Chemistry, Whistler, R. L.; Wolfrom, M. L. (Eds.), Academic Press, New York, Vol. II, (1963), pp. 318–325Google Scholar
  38. 38.
    Glen, W. L.; Myers, G. S.; Grant, G. A., “Monoalkyl hexoses: Improved procedures for the preparation of 1- and 3-methyl ethers of fructose, and of 3-alkyl ethers of glucose”, J. Chem. Soc. (1951) 2568–2572Google Scholar
  39. 39.
    Freudenberg, K.; Hixon, R. M., “Zur Kenntnis der Aceton-Zucker, IV.: Versuche Galaktose und Mannose”, Berichte (1923) 56, 2119–2127Google Scholar
  40. 40.
    Tipson, R. S., “1,2:3,4-Di-O-isopropylidene-α-D-galactopyranose”, in Methods in Carbohydrates Chemistry, Vol. II, Academic Press, New York (1963), p. 247Google Scholar
  41. 41.
    Ohle, H.; Berend, G., “Über die Aceton-Verbindungen der Zucker und ihre Derivate, IV.: Die Konstitution der Diaceton-galaktose”, Berichte (1925) 58, 2585–2589Google Scholar
  42. 42.
    Link, K. P.; Sell, H. M., “D-Galacturonic acid monohydrate”, Biochem. Prep.(1953) 3, 74–78Google Scholar
  43. 43.
    Ault, R. G.; Haworth, W. N.; Hirst, E. L., “Acetone derivatives of methylglycosides”, J. Chem. Soc. (1935) 1012–1020Google Scholar
  44. 44.
    Baer, E.; Fischer, H. O. L., “Studies on Acetone-Glyceraldehyde. VII. Preparation of l-Glyceraldehyde and l(-)Acetone Glycerol”, J. Am. Chem. Soc. (1939) 61, 761– 765CrossRefGoogle Scholar
  45. 45.
    Wiggins, L. F., “The acetone derivatives of hexahydric alcohols. Part I. Triacetone mannitol and its conversion into d-arabinose”, J. Chem. Soc. (1946) 13–14Google Scholar
  46. 46.
    Buchanan, J. G.; Saunders, R. M., “Methyl 2,3-anhydro-D-mannoside and 3,4-anhydro-D-altroside and their derivatives. Part III”, J. Chem. Soc. (1964) 1796– 1803Google Scholar
  47. 47.
    Evans, M. E., “Methyl 4,6-O-benzylidene-α- and -β-D-glucosides”, Carbohydr. Res. (1972) 21, 473–475CrossRefGoogle Scholar
  48. 48.
    Evans, M. E.; Parrish, F. W.; Long, L., Jr.,, “Acetal exchange reactions”, Carbohydr. Res. (1967) 3, 453–462CrossRefGoogle Scholar
  49. 49.
    Hasegawa, A.; Kiso, M., “Acetonation of 2-(acylamino)-2-deoxy-D-glucoses”, Carbohydr. Res. (1978) 63, 91–98CrossRefGoogle Scholar
  50. 50.
    Bonner, T. G., “Ethylidene Derivatives”, Methods in Carbohydrates Chemistry, Vol. II, Academic Press, New York (1963), pp. 309–313Google Scholar
  51. 51.
    Honeyman, J.; Stening, T. C., “Ethylidene derivatives of methyl aldopyranosides”, J. Chem. Soc. (1957) 3316–3317Google Scholar
  52. 52.
    O’Meara, D.; Shepherd, D. M., “The preparation of some glucose nitrates”, J. Chem. Soc. (1955) 4232–4235Google Scholar
  53. 53.
    Miljkovic, M.; Hagel, P., “Regioselective isopropylidenation of 2-acetamido-2-D-xylose diethyl dithioacetal”, Carbohydr. Res.(1983) 111, 319–324CrossRefGoogle Scholar
  54. 54.
    Hibbert, H.; Morazain, J. G., “Reactions relating to carbohydrates and polysaccharides, XXVIII. Structure of isopropylideneglycerol”, Can. J. Res. (1930) 2, 214–216Google Scholar
  55. 55.
    Brown, H. C.; Brewster, J. H.; Schechter, H., “An interpretation of the chemical behavior of five- and six-membered ring compounds”, J. Am. Chem. Soc. (1954) 76, 467–474CrossRefGoogle Scholar
  56. 56.
    Pitzer, K. S.; Donath, W. E., “Conformations and strain energy of cyclopentane and its derivatives”, J. Am. Chem. Soc. (1959) 81. 3213–3218CrossRefGoogle Scholar
  57. 57.
    van Roon, J. D., “Cyclic acetals”, Rec. Trav. Chim. (1929) 48, 173–190CrossRefGoogle Scholar
  58. 58.
    Brimacombe, J. S.; Foster, A. B.; Haines, A. H., “Aspects of stereochemistry. Part V. Some properties of 1,2-O-methyleneglycerol and related compounds”, J. Chem. Soc. (1960) 2582–2586Google Scholar
  59. 59.
    Hann, R. M.; Maclay, W. D.; Hudson, C. S., “The structures of the diacetone dulcitols”, J. Am. Chem. Soc. (1939) 61, 2432–2442CrossRefGoogle Scholar
  60. 60.
    Kochetkov, N. K.; Kudryashov, L. I.; Usov, A. I., “Interaction between di-O-isopropylidene-α-D-glucose and the halogen complexes of triphenyl phosphite”, Dokl. Akad. Nauk. USSR (1960) 133, 1094–1097Google Scholar
  61. 61.
    Lipták, A.; Nánási, P.; Neszmélyi, A.; Wagner, H., “Acetal migration during Koenigs-Knorr reactions; isolation of 3-O- and 6-O-(2, 3, 4, 6-tetra-O-acetyl-β-D-glucopyranosyl) derivatives of 1, 2:5, 6- and 1, 2:3, 5-di-D-isopropylidene-α-D-glucofuranose”, Carbohydr. Res. (1980) 86, 133–136CrossRefGoogle Scholar
  62. 62.
    Manatt, S. L. ; Roberts, J. D., “Small-ring compounds. XXIV. Molecular orbital calculations of the delocalization energies of some small-ring systems”, J. Org. Chem. (1959) 24, 1336–1338CrossRefGoogle Scholar
  63. 63.
    Breslow, R.; Kivelevich, D.; Mitchell, M. J.; Fabian, W.; Wendel, K., “Approaches to “Push-Pull” stabilized cyclobutadienes”, J. Am. Chem. Soc. (1965) 87, 5132 – 5139CrossRefGoogle Scholar
  64. 64.
    Hess, B. A.; Schaad, L. J., “Stabilization of substituted cyclobutadienes”, J. Org. Chem. (1976) 41, 3058 – 3059CrossRefGoogle Scholar
  65. 65.
    Fletcher, H. G., Jr., “1-O-Benzoyl-β-D-glucopyranose”, in Methods in Carbohydrates Chemistry, Vol. II, Academic Press, New York(1963) pp. 231–233Google Scholar
  66. 66.
    Christensen, J. E.; Goodman, L., “A mild method for the hydrolysis of acetal groups attached to sugars and nucleosides”, Carbohydr. Res.(1968) 7, 510–512CrossRefGoogle Scholar
  67. 67.
    Garegg, P. J.; Hultberg, H., “A novel, reductive ring-opening of carbohydrate benzylidene acetals, with unusual regioselectivity”, Carbohydr. Res. (1981) 93, C10-C11CrossRefGoogle Scholar
  68. 68.
    Nánási, P.; Lipták, A., “Carbohydrate methyl ethers. VI. Synthesis of phenyl β-D-glucopyranoside derivatives partially methylated in the sugar moiety”, Magy. Kem. Foly. (1974) 80, 217–225Google Scholar
  69. 69.
    Lipták, A.; Jodál, I.; Nánási, P., “Stereoselective ring-cleavage of 3-O-benzyl- and 2,3-di-O-benzyl-4,6-O-benzylidenehexopyranoside derivatives with the lithium aluminum hydride-aluminum chloride reagent”, Carbohydr. Res. (1975) 44, 1–11CrossRefGoogle Scholar
  70. 70.
    Lipták, A.; Jodál, I.; Nánási, P., “Hydrogenolysis of benzylidene acetals: synthesis of benzyl 2,3,6,2’, 3’, 4’-hexa-O-benzyl-β-cellobioside, -maltoside, and -lactoside, benzyl 2,3,4,2’, 3’,4’-hexa-O-benzyl-β-allolactoside, and benzyl 2,3,6,2’, 3’, 6’-hexa-O-benzyl-β-lactoside”, Carbohydr. Res. (1976) 52, 17–22CrossRefGoogle Scholar
  71. 71.
    Lipták, A.; Fügedi, P.; Nánási, P., “A simple method for the synthesis of benzyl 4-O-benzylhexopyranosides”, Carbohydr. Res. (1979) 68, 151–154CrossRefGoogle Scholar
  72. 72.
    Lipták, A.; Pekár, F.; Jánossy, L.; Jodál, I.; Fügedi, P.; Harangi, J.; Nánási, P.; Szejtli, J., “Regioselective hydrogenolysis of 4,6-O-benzylidene derivatives of hexopyranosides. Preparation of ”glyvenol”-like compounds”, Acta Chim. Acad. Sci. Hung. (1979) 99, 201–208Google Scholar
  73. 73.
    Lipták, A.; Fügedi, P.; Nánási, P., “Stereoselective hydrogenolysis of exo- and endo-2,3-benzylidene acetals of hexopyranosides”. Carbohydr. Res. (1976) 51, c19–c21CrossRefGoogle Scholar
  74. 74.
    Lipták, A., “Hydrogenolysis of the dioxolan type exo- and endo-benzylidene derivatives of carbohydrates with the LiAlH 4 -AlCl 3 reagent”, Tetrahedron. Lett. (1976) 17. 3551–3554CrossRefGoogle Scholar
  75. 75.
    Lipták, A.; Fügedi, P.; Nánási, P., “Synthesis of mono- and di-benzyl ethers of benzyl α-L-rhamnopyranoside”, Carbohydr. Res. (1978) 65, 209–217CrossRefGoogle Scholar
  76. 76.
    Lipták, A.; Jánossy, L.; Imre, J.; Nánási, P., “Stereoselective hydrogenolysis of dioxolane-type benzylidene acetals. Synthesis of partially substituted galactopyranoside derivatives”, Acta Chim. Acad. Sci. Hung. (1979) 101, 81–92Google Scholar
  77. 77.
    Fügedi, P.; Lipták, A.; Nánási, P.; Neszmélyi, A., “Synthesis of 4-O-α-D-galactopyranosyl-L-rhamnose and 4-O-α-D-galactopyranosyl-2-O-β-glucopyranosyl-L-rhamnose using dioxolane-type benzylidene acetals as temporary protecting-groups”, Carbohydr. Res. (1980) 80, 233–239CrossRefGoogle Scholar
  78. 78.
    Ashby, E. C.; Prather, J., “The composition of “Mixed Hydride” reagents. A study of the Schlesinger reaction”, J. Am. Chem. Soc. (1966) 88, 729–733CrossRefGoogle Scholar
  79. 79.
    Fügedi, P.; Lipták, A.; Nánási, P.; Szejtli, J., “The regioselectivity of the reductive ring-cleavage of the acetal ring of 4,6-O-benzylidenehexopyranosides”, Carbohydr. Res. (1982) 104. 55–67CrossRefGoogle Scholar
  80. 80.
    Leggetter, B. E.; Brown, R. K., “The influence of substituents on the ease and direction of ring opening in the LiAlH 4AlCl 3 reductive cleavage of substituted 1, 3- dioxolanes”, Can. J. Chem. (1964) 42, 990–1004CrossRefGoogle Scholar
  81. 81.
    Fleming, B. I.; Bolker, H. I., “Reductive cleavage of acetals and ketals by Borane”, Can. J. Chem. (1974) 52, 888–893CrossRefGoogle Scholar
  82. 82.
    Bolker, H. I.; Fleming, B. I., “Reductive cleavage of acetals and ketals by Borane. Part II. The Kinetics of the Reaction”, Can. J. Chem. (1975) 53, 2818–2821CrossRefGoogle Scholar
  83. 83.
    Hanessian, S., “The reaction of O-benzylidene sugars with N-bromosuccinimide”, Carbohydr. Res. (1966) 2, 86–88CrossRefGoogle Scholar
  84. 84.
    Garegg, P., “Regioselective Cleavage of O-Benzylidene Acetals to Benzyl Ethers”. in “Preparative Carbohydrates Chemistry”, Hanessian, S. (Ed.), .Marcel Dekker, Inc., New York, 1997, pp. 53–67Google Scholar
  85. 85.
    Binkley, R. W.; Goewey, G. S.; Johnston, J. C., “Regioselective ring opening of selected benzylidene acetals. A photochemically initiated reaction for partial deprotection of carbohydrates”, J. Org. Chem. (1984) 49, 992–996CrossRefGoogle Scholar
  86. 86.
    Deslongchamps, P.; Moreau, C., “Ozonolysis of Acetals. (1) Ester synthesis, (2) THP ether cleavage, (3) Selective oxidation of β-Glycoside, (4) Oxidative removal of benzylidene and ethylidene protecting groups”. Can. J. Chem. (1971) 49, 2465–2467CrossRefGoogle Scholar
  87. 87.
    Deslongchamps, P.; Moreau, C.; Fréhel, D.; Chênevert, R., “Oxidation of benzylidene acetals by Ozone”, Can. J. Chem. (1975) 53, 1204–1211CrossRefGoogle Scholar
  88. 88.
    Schmidt, O. Th., Methods in Carbohydrates Chemistry, Whistler, R. L.; Wolfrom, M. L.; BeMiller, J. N. (Eds.), Vol. II, Academic Press, New York, 1963, p.322Google Scholar
  89. 89.
    Blindenbacher, F.; Reichstein, T., “Synthese des L-Glucomethylose-3-methyläthers und seine Identifizierung mit Thevetose. Desoxyzucker, 19. Mitteilung”, Helv. Chiim. Acta (1948) 31, 1669–1676CrossRefGoogle Scholar
  90. 90.
    Freudenberg, K.; Durr, W.; von Hochsteller, H., “Zur Kenntnis der Aceton-Zucker, XIII: Die Hydrolyse einiger Disaccharide, Glucoside und Aceton-Zucker”, Berichte(1928) 61, 1735–1742Google Scholar
  91. 91.
    Ohle, H.; Dickhäuser, E., “Über die Aceton-Verbindungen der Zucker und Ihre Derivate, VI: Über Acylderivate der Monoaceton-glucose”, Chem. Ber. (1925) 58, 2593–2606Google Scholar
  92. 92.
    Iwadare, K., “Acetonderivate der Monosaccharide. II. Diaceton- und Monoaceton D-idose”, Bull. Chem. Soc. (Japan) (1944) 19, 27–29CrossRefGoogle Scholar
  93. 93.
    Theander, O., “Chromic acid oxidation of 1,2-O-isopropylidene-α-D-glucofuranose”, Acta Chem. Scand. (1963) 17, 1751–1760CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations