Isomerization of Sugars

  • Momcilo Miljković


In 1846 Dubrunfaut [1] observed that the optical rotation of a freshly dissolved α-d-glucose in water was changing with time and that after several hours it became constant.


General Acid Deuterium Oxide Hydroxyl Group Oxygen Bifunctional Catalyst Pyranose Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dubrunfaut, A. P., Compt. Rend. (1846) 23, 38Google Scholar
  2. 2.
    Hudson, C. S., “Multirotation of lactose”, Z. Physik. Chem. (1903) 44, 487–494Google Scholar
  3. 3.
    Erdmann, E. D., Berichte (1880) 13, 218Google Scholar
  4. 4.
    Urech, F., “Zur strobometrischen Bestimmung der Invertirungsgeschwindigkeit von Rohrzucker und des Uebergangs der Birotation von Milchzucker zu seiner constanten Drehung”, Berichte(1882) 15, 2130–2133Google Scholar
  5. 5.
    Hudson, C. S., “The Catalysis by Acids and Bases of the Mutarotation of Glucose”, J. Am. Chem. Soc. (1907) 29, 1571–1576CrossRefGoogle Scholar
  6. 6.
    Lowry, T. M., “ Studies of dynamic isomerism. Part XVIII. The mechanism of mutarotation”, J. Chem. Soc. (1925) 127, 1371–1385Google Scholar
  7. 7.
    Lowry, T. M.; Richards, E. M., “Studies of dynamic isomerism. Part XIX. Experiments on the arrest of mutarotation of tetramethylglucose”. J. Chem. Soc. (1925) 127, 1385–1401Google Scholar
  8. 8.
    Lowry, T. M.; Faulkner, I. J., “Studies of dynamic isomerism. XX. Amphoteric solvents as catalysts for the mutarotation of the sugars”, J. Chem. Soc., (1925) 127, 2883–2887Google Scholar
  9. 9.
    Lowry, T. M.; Smith, G. F., (1930) “Rapports sur les Hydrates de Carbone”, 10th Conf. Intern. Union. Chem., LiegeGoogle Scholar
  10. 10.
    Swain, C. G.; Brown, J. F.,“Concerted Displacement Reactions. VII. The Mechanism of Acid-Base Catalysis in Non-aqueous Solvents”, J. Am. Chem. Soc. (1952) 74, 2534–2537CrossRefGoogle Scholar
  11. 11.
    Hamil, W. H.; La Mer, V. K., “The Acid-Base Catalysis of the Mutarotation of Glucose in Protium Oxide-Deuterium Oxide Mixtures”, J. Chem. Phys. (1936) 4, 395–401CrossRefGoogle Scholar
  12. 12.
    Nicolle, J.; Weisbuch, F., “Comparison of the rates of mutarotation of various sugars in water and in deuterium oxide”, Compt. Rend. (1955) 240, 84–85Google Scholar
  13. 13.
    Fredenhagen, H.; Bonhoeffer, K. F., “Hexose rearrangement in heavy water”, Z. Physik. Chem. (1938) A181 392–405Google Scholar
  14. 14.
    Bonhoeffer, K. F., “Deuteron transfer in solutions”, Trans. Faraday. Soc. (1938) 34, 252–259CrossRefGoogle Scholar
  15. 15.
    Bell, R. P., “Acid-Base Catalysis”, Oxford University Press, London, 1941, p. 82Google Scholar
  16. 16.
    Purlee, E. L., “On the Solvent Isotope Effect of Deuterium in Aqueous Acid Solutions”, J. Am. Chem. Soc. (1959) 81, 263–272CrossRefGoogle Scholar
  17. 17.
    Challis, B. C.; Long, F. A.; Pocker, Y., “Relative rates of mutarotation of tetra- O-methyl- α -D-glucose in H 2 O and D 2 O and the mechanism of the reaction”, J. Chem. Soc. (1957) 4679–4681Google Scholar
  18. 18.
    Long, F. A.; Bigeleisen, J., “Correlations of relative rates in the solvents D2O and H2O with mechanisms of acid and base catalysis”, Trans. Faraday Soc. (1959) 55, 2077–2083Google Scholar
  19. 19.
    Richards, E. M.; Faulkner, I. J.; Lowry, T. M., “Studies of dynamic isomerism. Part XXIII. Mutarotation in aqueous alcohols”, J. Chem. Soc. (1925) 127, 1733–1739Google Scholar
  20. 20.
    Zhdanov, Yu. A.; Minkin, V. I.; Ostroumov, Yu. A.; Dorofenko, G. N., “Quantum chemistry of carbohydrates: Part I. The electronic structure of some pentoses”, Carbohydr. Res. (1968) 7, 156–160CrossRefGoogle Scholar
  21. 21.
    Del Re, G., “A simple M.O.-L.C.A.O. method for calculating the charge distribution in saturated organic molecules”, J. Chem. Soc. (1958), 4031–4040Google Scholar
  22. 22.
    Lemieux, R. U., “Some Implications in Carbohydrate Chemistry of Theories Relating to the Mechanisms of Replacement Reactions”, Advan. Carbohydr. Chem. (1954) 9, 1–57CrossRefGoogle Scholar
  23. 23.
    Swiderski, J.; Temeriusz, A., “Studies on the mechanism of methanolysis of some methyl image-glycopyranosides by the method of isotope exchange”, Carbohydr. Res. (1966) 3, 225–229CrossRefGoogle Scholar
  24. 24.
    Temeriusz, A., “Chromatographic analysis of the deacetylation products of methyl 2,3,4,6-tetra-O-acetyl-D-glucopyranosides in conditions of Fischer's methanolysis”, Rocz. Chem. (1966) 40, 825–829Google Scholar
  25. 25.
    Ferrier, R. J.; Hatton, L. R.; Overend, W. G., “Studies with radioactive sugars. III. The mechanism of the anomerization of ethyl α - and β -D-xylopyranoside”, Carbohydr. Res. (1968) 8, 56–60CrossRefGoogle Scholar
  26. 26.
    Jungius, C. L., “Isomeric changes of some dextrose derivatives, and the mutarotation of the sugars”, Z. Phys.Chem. (1905) 52, 97–108Google Scholar
  27. 27.
    Bishop, C. T.; Cooper, F. P., “Glycosidation of Sugars: I. Formation of Methyl-D- Xylosides”, Can. J. Chem. (1962) 40, 224–232CrossRefGoogle Scholar
  28. 28.
    Isbell, H. S.; Pigman, W., “Mutarotation of Sugars in Solution: Part I”, Adv. Carbohydr. Chem. (1968) 23, 11–57Google Scholar
  29. 29.
    Isbell, H. S.; Pigman, W., “Mutarotation of Sugars in Solution: Part II”, Adv. Carbohydr. Chem. (1969) 24, 13–65CrossRefGoogle Scholar
  30. 30.
    Lobry de Bruyn, C. A., “Action of dilute alkalis on the carbohydrates” Rec. Trav. Chim. (1895) 14, 156–165CrossRefGoogle Scholar
  31. 31.
    Lobry de Bruyn, C. A.; van Ekenstein, W. A., “Action of alkalis on the sugars. Reciprocal transformation of glucose, fructose, and mannose” Rec. Trav. Chim. (1895) 14, 201–206Google Scholar
  32. 32.
    Lobry de Bruyn, C. A.; Alberda van Ekenstein, W., “Action of alkalis on the sugars. IV”, Rec. Trav. Chim. (1897)16, 257–261Google Scholar
  33. 33.
    Lobry de Bruyn, C. A.; Alberda van Ekenstein, W., Rec. Trav. Chim. (1897)16, 241Google Scholar
  34. 34.
    Lobry de Bruyn, C. A.; Alberda van Ekenstein, W., “Action of alkalis on the sugars. V. Transformation of galactose. The tagatoses and galtose”, Rec. Trav. Chim. (1897), 16, 262–273Google Scholar
  35. 35.
    Lobry de Bruyn, C. A.; Van Alberda Ekenstein, W.,“Action of alkalis on the sugars. VI. Glutose and ψ -fructose”, Rec. Trav. Chim. (1897) 16, 274–281Google Scholar
  36. 36.
    Lobry de Bruyn, C. A.; Alberda Van Ekenstein, W., “Action of boiling water on d- fructose (levulose)”, Rec. Trav. Chim. (1897) 16, 282–283Google Scholar
  37. 37.
    Lobry de Bruyn, C. A.; Alberda van Ekenstein, W., “Action of alkalis on the sugars. VII. Maltose, lactose, and melibiose”, Rec. Trav. Chim. (1899) 18, 147–149Google Scholar
  38. 38.
    Lobry de Bruyn, C. A.; Alberda van Ekenstein, W., “D-Sorbose and L-sorbose ( ψ - tagatose) and their configuration”, Rec. Trav. Chim. (1900) 19, 1–11Google Scholar
  39. 39.
    Alberda van Ekenstein, W.; Blanksma, J. J., “The Transformation of l-Gulose and of l-Idose into l-Sorbose”, Rec. Trav. chim. (1908) 27, 1–4Google Scholar
  40. 40.
    Speck, J. C., “Lobry De Bruyn-Alberta Van Ekenstein Transformation”, Adv. Carbohydr. Chem. (1958) 13, 63–103Google Scholar
  41. 41.
    Spivak, C. T.; Roseman, S., “Preparation of N-Acetyl-D-mannosamine (2-Acetamido- 2-deoxy-D-mannose) and D-Mannosamine Hydrochloride (2-Amino-2-deoxy-D-man nose)”, J. Am. Chem. Soc. (1959) 81, 2403–2404CrossRefGoogle Scholar
  42. 42.
    Coxon, B.; Hough, L., “Epimerization of 2-acetamido-2-deoxy-D-pentoses”, J. Chem. Soc. (1961) 1577–1579Google Scholar
  43. 43.
    Wolfrom, M. L.; Lewis, W. L., “The reactivity of the methylated sugars. II. The action of dilute alkali on tetramethyl glucose”, J. Am. Chem. Soc. (1928) 50, 837–854CrossRefGoogle Scholar
  44. 44.
    Green, R. D.; Lewis, W. L., “The reactivity of the methylated sugars. III. The action of diluted alkali on tetramethyl-d-mannose”, J. Am.Chem. Soc. (1928) 50, 2813–2825CrossRefGoogle Scholar
  45. 45.
    Anet, E. F. L. J., “Unsaturated sugars: enols of 3-deoxy-D-”glucosone”, Chem. Ind. (London) (1963) 1035–1036Google Scholar
  46. 46.
    Anet, E. F. L. J., “Degradation of carbohydrates. VI. Isolation and structure of some Glycos-2-enes”, Aust. J. Chem. (1965) 18, 837–844CrossRefGoogle Scholar
  47. 47.
    Klemer, A.; Lukowski, H.; Zerhusen, F., “Über den alkalischen Abbau einiger D- Glucose-methyläther: 2-Methyl- und 2.4.6- Trimethyl-D-glucoseen-(2.3)”, Chem. Berichte (1963) 96, 1515–1519CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations