Advertisement

Anomeric Effect

  • Momčilo Miljković
Chapter

Abstract

In substituted cyclohexanes, such as cyclohexanol or its methyl ether, the substituent will preferably assume the equatorial position as opposed to the axial one, due to fewer nonbonded interactions with other ligands (in this case the C3 and the C5 hydrogen atoms) on the cyclohexane ring [1–5]. Thus, the conformational mixture of cyclohexanol or its methyl ether contains, at equilibrium, 89% of the conformer with equatorially oriented hydroxyl or methoxy group and 11% of the conformer with axially oriented hydroxyl or methoxy group, indicating clear preference for the equatorial conformer (Fig. 3.1).

Keywords

Axial Orientation Anomeric Effect Conformational Equilibrium Unshared Electron Pair Equatorial Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Szarek, W. A.; Horton, D., Eds. “Anomeric Effect, Origin and Consequences”, ACS Symposium Series 87, American Chemical Society, Washington, DC, 1979Google Scholar
  2. 2.
    Kirby, A. J., “The Anomeric Effect and Related Stereoelectronic Effects at Oxygen”, Springer-Verlag, Berlin, 1983Google Scholar
  3. 3.
    Deslongchamps, P., “Stereoelectronic Effects in Organic Chemistry”, Pergamon Press, Oxford, 1983Google Scholar
  4. 4.
    Thatcher, G. R. J., Eds., “The Anomeric Effect and Associated Stereoelectronic Effects”, ACS Symposium Series 539, American Chemical Society, Washington, DC, 1993Google Scholar
  5. 5.
    Juaristi, E.; Cuevas, G., “The Anomeric Effect”, CRC Press, Boca Raton, 1995Google Scholar
  6. 6.
    Bates, F. J. and Associates, “Polarimetry, Saccharimetry, and the Sugars”, United States Government Printing Office, Washington, DC, 1942, p.455Google Scholar
  7. 7.
    Angyal, S. J., “Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α:β ratios of aldopyranoses in aqueous solution”, Aust. J. Chem. (1968) 21, 2737–2746CrossRefGoogle Scholar
  8. 8.
    Angyal, S. J., “The composition and conformation of sugars in solution”, Angew. Chem. Intern. Ed. (1969) 8, 157–166CrossRefGoogle Scholar
  9. 9.
    Bonner, W. A., “The acid-catalyzed anomerization of Acetylated Aldopyranoses”, J. Am. Chem. Soc. (1959) 81, 1448–1452CrossRefGoogle Scholar
  10. 10.
    Lemieux, R. U., “Molecular Rearrangements”, Vol. 2, p 709, de Mayo, P., Ed., Interscience, New York, 1963Google Scholar
  11. 11.
    Lemieux, R. U.; Hayami, J-Y., “The mechanism of the Anomerization of the Tetra-O-acetyl-D-glucopyranosyl chlorides” Can. J. Chem. (1965) 43, 2162173Google Scholar
  12. 12.
    Pacsu, E., “Über die Einwirkung von Titan (IV)-chlorid auf Zucker-Derivate, I.: Neue Methode zur Darstellung der α β Aceto-chlor-zucker und Umlagerung des β-Methyl-glucosids in seine α-Form”, Chem. Ber. (1928) 61, 1508–1513Google Scholar
  13. 13.
    Lindberg, B., “The Zempl.acte.en glucoside synthesis”, Arkiv Kemi, Mineral., Geol., Ser. B (1944), 18, No. 9, 1–7Google Scholar
  14. 14.
    Lindberg, B., “Action of strong acids on acetylated glycosides. I. Transformation of some aliphatic tetraacetyl- β -glucosides to the α-form”, Acta Chem. Scand. (1948) 2, 426–429CrossRefGoogle Scholar
  15. 15.
    Lindberg, B., “Action of strong acids on acetylated glucosides. III. Strong acids and aliphatic glucoside tetraacetates in acetic anhydride-acetic acid solutions”, Acta Chem. Scand. (1949) 3, 1153–1169CrossRefGoogle Scholar
  16. 16.
    Chü, N. J., Ph. D. thesis, Department of Chemistry, University of Ottawa, 1959Google Scholar
  17. 17.
    Lemieux, R. U.; Chü, N. J., “Conformation and relative stabilities of acetylated sugars as determined by nuclear magnetic resonance spectroscopy and anomerization equilibria”, Abstracts of Papers, Am. Chem. Soc. 133, 31 N (1958)Google Scholar
  18. 18.
    Edward, J. T., “Stability of glycosides to acid hydrolysis”, Chemistry & Industry (London) (1955) 1102–1104Google Scholar
  19. 19.
    Corey, E. J., “The Stereochemistry of α-Haloketones. I. The molecular configurations of some Monocyclic α-Haloketones”, J. Am. Chem. Soc. (1953) 75, 2301–2304CrossRefGoogle Scholar
  20. 20.
    Lemieux, R. U., “Effects of unshared pairs of electrons and their Solvation Conformational Equilibria”, Pure Appl. Chem. (1971) 27, 527–548CrossRefGoogle Scholar
  21. 21.
    Winstein, S.; Holness, N. J., “Neighboring Carbon and Hydrogen. XIX. t-Butylcyclo hexyl Derivatives. Quantitative Conformational Analysis”, J. Am. Chem. Soc. (1955) 77, 5562–5578CrossRefGoogle Scholar
  22. 22.
    Eliel, E.L., Stereochemistry of Carbon Compounds, McGraw Hill, New York, 1962, p.236Google Scholar
  23. 23.
    Andersen, C.B.; Sepp, D. T., “Conformation and the anomeric effect in 2-oxy-substituted tetrahydropyrans”, Tetrahedron (1968) 24, 1707CrossRefGoogle Scholar
  24. 24.
    Isbell, H. S.; Pigman, W. W., “Bromine oxidation and mutarotation measurements of the α- and β-aldoses”, J. Res. Natl. Bur. Std. (1937) 18, 141–194Google Scholar
  25. 25.
    Angyal, S. J., “Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α: ® ratios of aldopyranoses in aqueous solution”, Aust. J. Chem. (1968) 21, 2737–2746CrossRefGoogle Scholar
  26. 26.
    Angyal, S. J., “The composition and conformation of sugars in solution” Angew. Chem. Intern. Ed. (1969) 8, 157–166CrossRefGoogle Scholar
  27. 27.
    Reeves, R. E., “Cuprammonium–Glycoside Complexes. II. The Angle Between Hydroxyl Groups on Adjacent Carbon Atoms”, J. Am. Chem. Soc. (1949) 71, 212–214CrossRefGoogle Scholar
  28. 28.
    Reeves, R. E., “The shape of pyranoside rings”, J. Am. Chem. Soc. (1950) 72, 1499–1506CrossRefGoogle Scholar
  29. 29.
    Reeves, R. E., “Cuprammonium-Glycoside complexes”, Adv. Carbohydr. Chem. (1951) 6, 107–134Google Scholar
  30. 30.
    Hageman, H. J. , PhD Thesis, Leiden (1965)Google Scholar
  31. 31.
    Eliel, E. L.; Allinger, N.L.; Angyal, S. J.; Morrison, G. A., Conformational Analysis, Interscience, New York, 1965, p. 44Google Scholar
  32. 32.
    Planje, M. C., PhD Thesis, Leiden (1964)Google Scholar
  33. 33.
    Booth, G. E.; Ouellette, R. J., “Conformational Analysis. V.1, 2 2-Chloro- and 2-Bromotetrahydropyran”, J. Org. Chem. (1966) 31, 544–546CrossRefGoogle Scholar
  34. 34.
    Anderson, C. B.; Sepp, D. T., “Conformation and the anomeric effect in 2-halotetrahydropyrans”, J. Org. Chem. (1967) 32, 607–611CrossRefGoogle Scholar
  35. 35.
    Akishin, P. A.; Vilkov, L. V.; Sokolova, N. P., “Electronographic study of the structure of the molecules of monochloro- and monobromodimethyl ethers”, Izvest. Sibir. Otdel. Akad. Nauk S.S.S.R. (1960) 5, 59–60Google Scholar
  36. 36.
    Planje, M. C.; Toneman, L. H.; Dallinga, G., Rec. Trav. Chim. (1965) 84, 232CrossRefGoogle Scholar
  37. 37.
    Bishop, C. T.; Cooper, F. P., “Glycosidation of sugars. II. Methanolysis of D-Xylose. D-Arabinose, D-Lyxose, and D-Ribose”, Can. J. Chem. (1963) 41, 2743–2758CrossRefGoogle Scholar
  38. 38.
    Eliel, E. L.; Giza, C. A., “Conformational analysis. XVII. 2-Alkoxy- and 2-alkylthio- tetrahydropyrans and 2-alkoxy-1,3-dioxanes. Anomeric effect”, J. Org. Chem. (1968) 33, 3754–3758CrossRefGoogle Scholar
  39. 39.
    Pierson, G. O.; Runquist, O. A., “Conformational analysis of some 2-alkoxytetra- hydropyrans”, J. Org. Chem. (1968) 33, 2572–2574CrossRefGoogle Scholar
  40. 40.
    Sweet, F.; Brown, R. K., “Cis- and trans-2,4-dimethoxytetrahydropyran. Models for the study of the anomeric effect”, Canad. J. Chem. (1968) 46, 1543–1548Google Scholar
  41. 41.
    de Hoog, A. J.; Buys, H. R.; Altona, C.; Havinga, E., “Conformation of non- aromatic ring compounds—LII: NMR spectra and dipole moments of 2-alkoxytetrahydropyrans”, Tetrahedron (1969) 25, 3365–3375CrossRefGoogle Scholar
  42. 42.
    Altona, C.; Havinga, E. cited as unpublished in Romers, C.; Altona, C.; Buys, H. R.; Havinga, E. Topics in Stereochemistry, Eliel, E. L.; Allinger, N. L., Eds., Vol. 4, Wiley-Interscience, New York1969, pp. 39–97Google Scholar
  43. 43.
    Altona, C.; Romers, C.; Havinga, E., “Molecular structure and conformation of some dihalogenodioxanes”, Tetrahedron Lett. (1959) 1, 16–20CrossRefGoogle Scholar
  44. 44.
    Romers, C.; Altona, C.; Buys, H. R., Havinga, E., “The Anomeric Effect”, in Topics in Stereochemistry, Eliel, E. L.; Allinger, N. L., Eds., Vol. 4, Wiley- Interscience, New York1969, pp. 39–97Google Scholar
  45. 45.
    Altona, C., Ph. D. Thesis, Leiden, (1964)Google Scholar
  46. 46.
    Altona, C.; Romers, C, “The conformation of non-aromatic ring compounds. VIII. The crystal structure of cis-2,3-dichloro-1,4-dioxane at -l40°C”, Acta Cryst. (1963) 16, 12251232Google Scholar
  47. 47.
    Altona, C.; Knobler, C.; Romers, C., “The conformation of non-aromatic ring compounds. VII. Crystal structure of trans-2,5-dichloro-1,4-dioxane at 125°C”, Acta Cryst. (1963) 16,1217–1225CrossRefGoogle Scholar
  48. 48.
    de Wolf, N.; Romers, C.; Altona, C., “The conformation of non-aromatic ring compounds. XXXIV. The crystal structure of trans-2,3-dichloro-1,4-thioxane at -185°C”. Acta. Cryst. (1967) 22, 715–719CrossRefGoogle Scholar
  49. 49.
    Lemieux, R. U.; Koto, S.; Voisin, D., “The Exo-Anomeric Effect”, in Szarek, W. A.; Horton, D., Eds., “The Anomeric Effect: Origin and Consequences”, Am. Chem. Soc. Symposium Series, Vol. 87, Washington 1979, pp 17–29Google Scholar
  50. 50.
    Hutchins, R. O.; Kopp, L. D.; Eliel, E. L., “Repulsion of syn-axial electron pairs. The rabbit-ear effect”, J. Am. Chem. Soc. (1968) 90, 7174–7175CrossRefGoogle Scholar
  51. 51.
    Kubo, M., Sci. Papers Inst. Phys. Chem. Res. (Tokyo) (1936) 29, 179Google Scholar
  52. 52.
    Aoki, K., J. Chem. Soc. (Japan), Pure Chem. Sect. (1953) 74, 110; Chem. Abstr. (1953) 47, 5191Google Scholar
  53. 53.
    Astrup, E. E., “Molecular structure of dimethoxy-methane, MeOCH 2 OMe”, Acta Chemica Scand. (1971) 25, 1494–1495CrossRefGoogle Scholar
  54. 54.
    Booth, H.; Lemieux, R. U., “Anomeric effect: the conformational equilibriums of tetrahydro-1,3-oxazines and 1-methyl-1,3-diazane”, Can. J. Chem. (1971) 49, 777–788CrossRefGoogle Scholar
  55. 55.
    Zefirov, N. S., “The problem of conformational effects”, Tetrahedron (1977) 33, 3192CrossRefGoogle Scholar
  56. 56.
    Eliel, E, L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A., Conformational Anal., p. 460, Wiley-Interscience, 1965Google Scholar
  57. 57.
    Horton, D.; Turner, W. N., “Conformational and configurational studies on some Acetylated Aldopyranosyl Halides”, J. Org. Chem. (1965) 30, 3387–3394CrossRefGoogle Scholar
  58. 58.
    Lemieux, R. U.; Morgan, A. R., “The abnormal conformations of Pyridinium α-glycopyranosides”, Can. J. Chem. (1965) 43, 2205–2213CrossRefGoogle Scholar
  59. 59.
    James, M. N. G., Proc. Can. Fed. Biol. Soc. (1969) 13, 71Google Scholar
  60. 60.
    Lemieux, R. U.; Koto, S., “The conformational properties of glycosidic linkages”, Tetrahedron (1974) 30, 1933–1944CrossRefGoogle Scholar
  61. 61.
    Lemieux, R. U.; Hendriks, K. B.; Stick, R. V.; James, K. “Halide ion catalyzed glycosidation reactions. Syntheses of α-linked disaccharides”, J. Am. Chem. Soc. (1975) 97, 4056–4062CrossRefGoogle Scholar
  62. 62.
    Saluja, S. S., Ph. D. Thesis, University of Alberta, 1971Google Scholar
  63. 63.
    Paulsen, H.; Györgdeák, Z.; Friedmann, M., “Konformationsanalyse, V. Einfluß des anomeren und inversen anomeren Effektes auf Konformationsgleichgewichte von N-substituierten N-Pentopyranosiden”, Chem. Ber. (1974) 107, 1590–1613CrossRefGoogle Scholar
  64. 64.
    Grein, F.; Deslongchamps, P., “The anomeric and reverse anomeric effect. A simple energy decomposition model for acetals and protonated acetals, Can. J. Chem. (1992) 70, 1562–1572CrossRefGoogle Scholar
  65. 65.
    Grein, F., “Anomeric and Reverse Anomeric Effect in Acetals and Related Functions” in “The Anomeric Effect and Associated Stereoelectronic Effects”, Thatcher, G. R. J., Ed. ACS Symposium Series No. 539, 205–226, ACS, Washington, DC, 1993CrossRefGoogle Scholar
  66. 66.
    Finch, P.; Nagpurkar, A. G., “The reverse anomeric effect: further observations on N-glycosylimidazoles”, Carbohydr. Res. (1976) 49, 275–287CrossRefGoogle Scholar
  67. 67.
    Ratcliffe, A. J.; Fraser-Reid, B., “Generation of -D-glucopyranosylacetonitrilium ions. Concerning the reverse anomeric effect”, J. Chem. Soc. Perkin 1(1990) 747–750CrossRefGoogle Scholar
  68. 68.
    Batchelor, J. G., “Conformational analysis of cyclic amines using carbon-13 chemical shift measurements: dependence of conformation upon ionisation state and solvent”, J. Soc., Perkin Trans. 2 (1976) 1585–1590CrossRefGoogle Scholar
  69. 69.
    Booth, H.; Jozefowicz, M. L., “The application of low temperature 13C nuclear magnetic resonance spectroscopy to the determination of the A values of amino-, methylamino-, and dimethylamino-substituents in cyclohexane” J. Chem. Soc. Perkin Trans. 2 (1976) 895–901Google Scholar
  70. 70.
    Sicher, J.; Jonás, J.; Tichý, M., “The a-values of the amino acid and dimethylamino groups”, Tetrahedron Lett. (1963) 4, 825–830Google Scholar
  71. 71.
    Eliel, E. L.; Della, E. W.; Williams, T. H., “The conformational equilibrium of the amino group”, Tetrahedron Lett. (1963) 4, 831–835Google Scholar
  72. 72.
    Ford, R. A.; Allinger, N. L., “Conformational analysis. LXVII. Effect of solvent on the conformational energy of the carbethoxy group”, J. Org. Chem. (1970) 35, 3178–3181CrossRefGoogle Scholar
  73. 73.
    Perrin, C. L.; Armstrong, K. B., “Conformational analysis of glucopyranosylammonium ions: does the reverse anomeric effect exist?”, J. Am. Chem. Soc. (1993) 115, 6825–6834CrossRefGoogle Scholar
  74. 74.
    Isbell, H. S.; Frush, H. L., “Mutarotation, Hydrolysis, and Rearrangement Reactions of Glycosylamines”, J. Org. Chem. (1958) 23, 1309–1319CrossRefGoogle Scholar
  75. 75.
    Pinto, B. M.; Leung, Y. N., “The Anomeric Effect and Associated Stereoelectronic Effects”, Thatcher, G. R. J., Ed. ACS Symposium Series No. 539, 126–155, ACS, Washington, DC, 1993CrossRefGoogle Scholar
  76. 76.
    Cramer, C. J., “Anomeric and reverse anomeric effects in the gas phase and aqueous solution”, J. Org. Chem. (1992) 57, 7034–7043CrossRefGoogle Scholar
  77. 77.
    Salzner, U; Schleyer, P. v. R., “Ab initio examination of anomeric effects in Tetra-hydropyrans, 1,3-Dioxanes, and Glucose”, J. Org. Chem. (1994) 59, 2138–2155CrossRefGoogle Scholar
  78. 78.
    Chan, S. S. C.; Szarek, W. A.; Thatcher, G. R. J., “The reverse anomeric effect in N-pyranosylimidazolides: a molecular orbital study”, J. Chem. Soc. Perkin Trans. 2, (1995) 45–60Google Scholar
  79. 79.
    Vaino, A. R.; S. S. C. Chan; Szarek, W. A.; Thatcher, G. R. J., “An experimental re-examination of the reverse anomeric effect in N-Glycosylimidazoles”, J. Org. Chem. (1996) 61, 4514–4515CrossRefGoogle Scholar
  80. 80.
    Fabian, M. A.; Perrin, C. L.; Sinnott, M. L., “Absence of reverse anomeric effect: Conformational analysis of Glucosylimidazolium and Glucosylimidazole” J. Am. Chem. Soc. (1994) 116, 8398–8399CrossRefGoogle Scholar
  81. 81.
    Juaristi, E.; Cuevas, G, “Recent studies of the anomeric effect”, Tetrahedron, (1992) 48, 5019–5087CrossRefGoogle Scholar
  82. 82.
    Mikolajczyk, M.; Graczyk, P.; Wieczorek, M. W.; Bujacz, G “Conformational preference of 2-Triphenylphosphonio-1,3-Dithianes: Competition between steric and anomeric effects”, Angew. Chem. Int. Ed. Engl.(1991) 30, 578–580CrossRefGoogle Scholar
  83. 83.
    Graczyk, P. P.; Mikolajczyk, M.; Phosphorus, Sulfur Silicon Relat. Elem. (1993) 78, 313Google Scholar
  84. 84.
    Juaristi, E.; Cuevas, G., “Conformational analysis of 1,3-dithian-2-yltrimethylphosphonium chloride. Origin of the S-C-P anomeric effect”, J. Am. Chem. Soc. (1993) 115, 1313– 1316CrossRefGoogle Scholar
  85. 85.
    Thibaudeau, C.; Plavec, J.; Watanabe, K. A.; Chattopadhyaya, J., “How do the aglycons drive the pseudorotational equilibrium of the pentofuranose moiety in C-nucleosides?”, J. Chem Soc., Chem. Commun. (1994) 537–540Google Scholar
  86. 86.
    Jones, P. G.; Komarov, I. V.; Wothers, P. D.,“A test for the reverse anomeric effect”, Chem. Commun., 1998, 1695–1696Google Scholar
  87. 87.
    Kennedy, J.; Wu, J.; Drew, K.; Carmichael, I.; Serianni, A. S., “Carbohydrate reaction intermediates: Effect of ring-oxygen protonation on the structure and conformation of Aldofuranosyl rings”, J. Am. Chem. Soc. (1997) 119, 8933–8945CrossRefGoogle Scholar
  88. 88.
    Alder, R. W.; Carniero, T. M. G.; Mowlam, R. W.; Orpen, A. G.; Petillo, P. A.; Vachon, D. J.; Weisman, G. R.; White, J. M., “Evidence for hydrogen-bond enhanced structural anomeric effects from the protonation of two aminals, 5-methyl-1,5,9-triazabicyclo[7.3.1]tridecane and 1,4,8,11-tetraazatricyclo[9.3.1.14,8]hexadecane”, J. Chem. Soc., Perkin Trans. 2 (1999) 589–599Google Scholar
  89. 89.
    Cramer, C. J., “Hyperconjugation as it affects conformational analysis”, J. Mol. Struct. (THEOCHEM) (1996) 370, 135–146CrossRefGoogle Scholar
  90. 90.
    Ganguly, B.; Fuchs, B., “Stereoelectronic Effects in Negatively and Positively (Protonated) Charged Species. Ab Initio Studies of the Anomeric Effect in 1,3-Dioxa Systems”, J. Org. Chem.(1997) 62, 8892–8901CrossRefGoogle Scholar
  91. 91.
    Cloran, F.; Zhu, Y.; Osborn, J.; Carmichael, I.; Serianni, A. S., “2-Deoxy-D- ribofuranosylamine: Quantum mechanical calculations of molecular structure and NMR spin–spin coupling constants in nitrogen-containing Saccharides”, J. Am. Chem. Soc. (2000) 122, 6435–6448CrossRefGoogle Scholar
  92. 92.
    Randell, K. D.; Johnston, B. D.; Green, D. F.; Pinto, B. M., “Is there a generalized reverse anomeric effect? Substituent and solvent effects on the configurational equilibria of neutral and protonated N-Arylglucopyranosylamines and N-Aryl-5- thioglucopyranosylamines”, J. Org. Chem. (2000) 65, 220–226CrossRefGoogle Scholar
  93. 93.
    Guthrie, J. P., “Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units”, Can. J. Chem. (1978) 56, 2342–2354CrossRefGoogle Scholar
  94. 94.
    Booth, H.; Lemieux, R. U., “Anomeric effect: the conformational equilibriums of tetrahydro-1,3-oxazines and 1-methyl-1,3-diazane” Can. J. Chem. (1971) 49, 777–788CrossRefGoogle Scholar
  95. 95.
    Allingham, Y.; Cookson, R. C.; Crabb, T. A.; Vary, S., “The NMR spectra and conformations of some tetrahydro-1, 3-oxazines”, Tetrahedron (1968) 24, 4625–4630CrossRefGoogle Scholar
  96. 96.
    Allingham, Y.; Cookson, R. C.; Crabb, T. A.; Vary, S., “The NMR spectra and conformations of some tetrahydro-1, 3-oxazines”, Tetrahedron (1968) 24, 4625–4630CrossRefGoogle Scholar
  97. 97.
    Booth, H.; Khedhair, K. A., “Endo-anomeric and exo-anomeric effects in 2-substituted tetrahydropyrans”, J. Chem. Soc., Chem. Commun. (1985) 467–468Google Scholar
  98. 98.
    Kirby, A. J.; Wothers, P. D., “Conformational equilibria involving 2-amino-1, 3-dioxanes: steric control of the anomeric effect”, ARKIVOC (2001) XII, 58–71Google Scholar
  99. 99.
    Booth, H.; Readshaw, S. A., “Experimental studies of the anomeric effect. Part IV. Conformational equilibria due to ring inversion in tetrahydropyrans substituted at position 2 by the groups ethoxy, 2'-fluoroethoxy, 2,'2'-difluoroethoxy, and 2',2',2'-trifluoroethoxy”, Tetrahedron (1990) 46, 2097–2110CrossRefGoogle Scholar
  100. 100.
    Booth, H.; Khedhair, K. A.; Readshaw, S. A., “Experimental studies of the anomeric effect. I. 2-Substituted tetrahydropyrans”, Tetrahedron (1987), 43(20), 4699–4723CrossRefGoogle Scholar
  101. 101.
    Kilpatrick, J. E.; Pitzer, K. S.; Spitzer, R., “The thermodynamics and molecular structure of cyclopentane”, J. Am. C hem. Soc. (1947) 69, 2483–2488CrossRefGoogle Scholar
  102. 102.
    Plavec, J.; Tong, W.; Chattopadhyaya, J., “How do the gauche and anomeric effects drive the pseudorotational equilibrium of the pentofuranose moiety of nucleosides?”, J. Am. Chem. Soc. (1993) 115, 9734–9746CrossRefGoogle Scholar
  103. 103.
    Plavec, J.; Garg, N.; Chattopadhyaya, J., “How does the steric effect drive the sugar conformation in the 3-C-branched nucleosides?”, J. Chem. Soc. Chem. Commun. (1993), 1011–1014Google Scholar
  104. 104.
    Plavec, J.; Koole, L. H.; Chattopadhyaya, J., “Structural analysis of 2',3'-dideoxyinosine, 2',3'-dideoxyadenosine, 2',3'-dideoxyguanosine, and 2',3'-dideoxycytidine by 500-MHz proton-NMR spectroscopy and ab-initio molecular orbital calculations”, J. Biochem. Biophys. Methods (1992) 25, 253–272CrossRefGoogle Scholar
  105. 105.
    Altona, C.; Sundaralingam, M., “Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation”, J. Am. Chem. Soc. (1972) 94, 8205–8212CrossRefGoogle Scholar
  106. 106.
    Altona, C.; Sundaralingam, M., “Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants”, J. Am. Chem. Soc. (1973) 95, 2333–2344CrossRefGoogle Scholar
  107. 107.
    Saenger, W., “Principles of Nucleic Acid Structure”, Springer-Verlag, Berlin, 1988Google Scholar
  108. 108.
    Olson, W. K.; Sussman, J. L., “How flexible is the furanose ring? 1. A comparison of experimental and theoretical studies”, J. Am. Chem. Soc. (1982) 104, 270–278CrossRefGoogle Scholar
  109. 109.
    Olson, W. K., “How flexible is the furanose ring? 2. An updated potential energy estimate”, J. Am. Chem. Soc. (1982) 104, 278–286CrossRefGoogle Scholar
  110. 110.
    Plavec, J.; Tong, W.; Chattopadhyaya, J., “How do the gauche and anomeric effects drive the pseudorotational equilibrium of the pentofuranose moiety of nucleosides?”, J. Am. Chem. Soc. (1993) 115, 9734–9746CrossRefGoogle Scholar
  111. 111.
    Plavec, J.; Thibaudeau, C.; Chattopadhyaya, J., “How do the energetics of the stereoelectronic gauche and anomeric effects modulate the conformation of nucleos(t)ides”, Pure. Appl. Chem. (1996) 68, 2137–2144CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State University, Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations