Conformational Analysis of Monosaccharides

  • Momcilo Miljković


Molecules are dynamic assemblies of atoms chemically linked by single or multiple bonds. Hence, all atoms as well as groups of atoms are in perpetual motion, vibrating and rotating about chemical bonds. The deformation of chemical bonds due to vibration (stretching, wagging, etc.) of atoms is quantized and it is not the subject of conformational analysis. However, the rotation of atoms about the single bonds is the subject of conformational analysis.


Conformational Analysis Chair Conformation Anomeric Effect Hydroxymethyl Group Cyclohexane Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lowe, J. P., “Barriers to internal rotation about single bonds”, Progr. Phys. Org. Chem. (1968) 6, 1–80CrossRefGoogle Scholar
  2. 2.
    Lowe, J. P., “Barrier to internal rotation in ethane”, Science (1973) 179, 527–532CrossRefGoogle Scholar
  3. 3.
    Oelfke, W. C.; Gordy, W., “Millimeter-wave spectrum of hydrogen peroxide”, J. Chem. Phys. (1969) 51, 5336–5343CrossRefGoogle Scholar
  4. 4.
    Bair, R. A.; Goddard, III, W. A., “Ab initio studies of the structure of peroxides and peroxy radicals”, J. Am. C hem. Soc. (1982) 104, 2719–2724CrossRefGoogle Scholar
  5. 5.
    Pitzer, K. S., “Potential energies for rotations about single bonds”, Discuss. Fara- day Soc. (1951) 10, 66–73CrossRefGoogle Scholar
  6. 6.
    Weiss, S.; Leroi, G. E., “Direct observation of the infrared torsional spectrum of C 2 H 6 , CH 3 CD 3 , and C 2 D 6”, J. Chem. Phys. (1968) 48, 962–967CrossRefGoogle Scholar
  7. 7.
    Hirota, E.; Saito, S.; Endo, Y., “Barrier to internal rotation in ethane from the microvawe spectrum of CH 3 CHD 2”, J. Chem. Phys. (1979) 71, 1183–1187CrossRefGoogle Scholar
  8. 8.
    Fantoni, R.; van Helroort, K.; Knippers, W.; Reuss, J., “Direct observation of torsional levels in Raman spectra of C 2 H 6”, Chem. Phys. (1986) 110, 1–16CrossRefGoogle Scholar
  9. 9.
    Pitzer, R. M., “The barrier to internal rotation in ethane”, Acc. Chem. Res. (1983) 16, 207–210CrossRefGoogle Scholar
  10. 10.
    Sovers, O. J.; Kern, C. W.; Pitzer, R. M.; Karplus, M., “Bond-function analysis of rotational barriers: Ethane”, J. Chem. Phys. (1968) 49, 2592–2599CrossRefGoogle Scholar
  11. 11.
    Bader, R. F. W.; Cheeseman, J. R.; Laidig, K. E.; Wiberg, K. B.; Brenemann, C., “Origin of rotation and inversion barriers”, J. Am. Chem. Soc. (1990) 112, 6530– 6536CrossRefGoogle Scholar
  12. 12.
    Klyne, W.; Prelog, V., “Description of steric relationship across single bond”, Experientia (1960) 16, 521–523CrossRefGoogle Scholar
  13. 13.
    Horton, D.; Wander, J. D., “Conformations of acyclic derivatives of sugars”, Carbohydr. Res. (1969) 10, 279–288CrossRefGoogle Scholar
  14. 14.
    Azarnia, N.; Jeffrey, G. A.; Kim, H. S.; Park, Y. J., Joint ACS/CIC Conference Abstracts of Papers, CARB 26 (1970)Google Scholar
  15. 15.
    Berman, H. M.; Rosenstein, R. D., “The crystal structure of galactitol”, Acta Cryst. (1968) B24, 435–441Google Scholar
  16. 16.
    Berman, H. M.; Jeffrey, G. A.; Rosenstein, R. D., “The crystal structures of the [alpha] and [beta] forms of D-mannitol”, Acta Cryst. (1968) B24, 442–449Google Scholar
  17. 17.
    Kim, S. H.; Jeffrey, G. A.; Rosenstein, R. D., “The crystal structure of the K form of D-mannitol”, Acta Cryst. (1968) B24, 1449–1455Google Scholar
  18. 18.
    Hunter, F. D.; Rosenstein, R. D., “The crystal structure of D,L-arabinitol”, Acta Cryst. (1968) B24, 1652–1660Google Scholar
  19. 19.
    Staab, H. A., “Einführug in die theoretische organische Chemie”, Verlag Chemie, 1960, p.547Google Scholar
  20. 20.
    Pitzer, K. S., “Strain energies of cyclic hydrocarbons”, Science, (1945) 101, 672CrossRefGoogle Scholar
  21. 21.
    Kilpatrick, J. E.; Pitzer, K. S.; Spitzer, R., “The thermodynamics and molecular structure of cyclopentane”, J. Am. Chem. Soc. (1947) 69, 2483–2488CrossRefGoogle Scholar
  22. 22.
    Pitzer, K. S.; Donath, W. E., “Conformations and strain energy of cyclopentane and its derivatives”, J. Am. Chem. Soc. (1959) 81, 3213–3218CrossRefGoogle Scholar
  23. 23.
    Brutcher, F. V., Jr.; Roberts, T.; Barr, S. J.; Pearson, N., “The conformations of substituted cyclopentanes. I. The infrared analysis and structure of the α -Halocam phors, the α -Halo-2-indanones and the α -Halocyclopentanones”, J. Am. Chem. Soc. (1959) 81, 4915–4920CrossRefGoogle Scholar
  24. 24.
    Aston, J. G.; Schumann, S. C.; Fink, H. L.; Doty, P. M., “The structure of Ali- cyclic compounds”, J. Am. Chem. Soc. (1941) 63, 2029–2030CrossRefGoogle Scholar
  25. 25.
    Aston, J. G.; Fink, H. L.; Schumann, S. C., “The heat Capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclopentane. Evidence for a non-planar structure”, J. Am. Chem. Soc., (1943) 65, 341–346CrossRefGoogle Scholar
  26. 26.
    McCullough, J. P., “Pseudorotation in cyclopentane and related molecules”, J. Chem. Phys. (1958) 29, 966–967CrossRefGoogle Scholar
  27. 27.
    McCullough, J. P.; Pennington, R. E.; Smith, J. C.; Hossenlopp, I. A.; Waddington, G., “Thermodynamics of cyclopentane, methylcyclopentane and 1, cis-3-Dimethyl cyclopentane: Verification of the concept of Pseudorotation”, J. Am. Chem. Soc. (1959) 81, 5880–5883CrossRefGoogle Scholar
  28. 28.
    Almenningen, A.; Bastiansen, O.; Skancke, P. N., “Preliminary results of an electron diffraction reinvestigation of cyclobutane and cyclopentane , Acta Chem. Scand. (1961) 15, 711–712CrossRefGoogle Scholar
  29. 29.
    Lemieux, R. U., “The configuration and conformation of Thymidine”, Can. J. Chem. (1961) 39, 116–120CrossRefGoogle Scholar
  30. 30.
    Jardetzky, C. D., “Proton magnetic resonance studies on Purines, Pyrimidines, Ribose Nucleosides and Nucleotides. III. Ribose conformation”, J. Am. Chem. Soc. (1960) 82, 229–233CrossRefGoogle Scholar
  31. 31.
    Jardetzky, C. D., “N.m.r. of nucleic acid derivatives. V. Deoxyribose conformation”, J. Am. Chem. Soc. (1961) 83, 2919–2920CrossRefGoogle Scholar
  32. 32.
    Jardetzky, C. D., “Proton magnetic resonance of nucleotides. IV. Ribose conformation”, J. Am. Chem. Soc. (1962) 84, 62–66CrossRefGoogle Scholar
  33. 33.
    Abraham, R. J.; Hall, L. D.; McLauchlan, K. A., “A proton resonance study of the conformation of carbohydrates in solution. Part I. Derivatives of 1,2-O- Isopropylidene- α -D-xylo-hexofuranose”, J. Chem. Soc. (1962) 3699–3705Google Scholar
  34. 34.
    Lemieux, R. U., “Rearrangements and Isomerizations in Carbohydrate Chemistry”, In P. de Mayo, ed., “Molecular Rearrangements”, Interscience Division, John Wiley and Sons, New York, 1963, p. 709Google Scholar
  35. 35.
    Angyal, S. J., “The composition and conformation of sugars in solution”, Angew. Chem. Intern. Ed. (1969) 8, 157–166CrossRefGoogle Scholar
  36. 36.
    Lemieux, R. U., In “Molecular Rearrangements”, P. De Mayo, ed., Vol 2, Wiley- Interscience, New York, 1963, pp. 710–713Google Scholar
  37. 37.
    Bishop, C. T.; Cooper, F. P., “Glycosidation of sugars. II. Methanolysis of D-xylose, D-arabinose, D-lyxose, and D-ribose”, Can. J. Chem. (1963) 41. 2743–2758CrossRefGoogle Scholar
  38. 38.
    Smirnyagin, V.; Bishop, C. T., “Glycosidation of sugars. IV. Methanolysis of D- glucose, D-galactose, and D-mannose”, Can. J. Chem. (1968) 46, 3085–3090CrossRefGoogle Scholar
  39. 39.
    Spencer, M., Acta Cryst. (1959) 12, 59CrossRefGoogle Scholar
  40. 40.
    Lemieux, R. U.; Nagarajan, R.,“The configuration of Di-D-Fructose Anhydride I”, Can. J. Chem. (1964) 42, 1270–1278CrossRefGoogle Scholar
  41. 41.
    Hendrickson, J. B., “Molecular geometry. I. Machine Computation of the common rings”, J. Am. Chem. Soc. (1961) 83, 4537–4547CrossRefGoogle Scholar
  42. 42.
    Anet, F. A. L.; Anet, R., “Conformational Processes in Rings”, in L. M. Jackman and F. A. Cotton, eds. “Dynamic Nuclear Magnetic Resonance Spectroscopy”, Academic Press, New York, 1975, p. 543ffGoogle Scholar
  43. 43.
    Sandstrom, J., “Dynamic NMR Spectroscopy”, Academic Press, New York, 1982Google Scholar
  44. 44.
    Van de Graaf, B.; Baas, J. M. A.; Wepster, B. M., “Studies on cyclohexane derivatives. Part XV. Force field calculations on some tert-butyl substituted cyclohexane compounds”, Rec.Trav. Chim.(Pays-Bas) (1978) 97, 268–273CrossRefGoogle Scholar
  45. 45.
    Van de Graaf, B.; Baas, J. M. A.; Van Veen, A., “Empirical force field calculations. VI. Exploration of reaction paths for the interconversion of conformers. Application to the interconversion of the cyclohexane conformers”, Rec. Trav. Chim. (Pays-Bas) (1980) 99, 175–178CrossRefGoogle Scholar
  46. 46.
    Eliel, E. L.; Allinger. N. L,.Angyal, S. J.; Morrison, G. A., “Conformational Analysis”, Wiley-Interscience, New York, 1965, pp. 351–432Google Scholar
  47. 47.
    Angyal, S. J., “Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α: β ratios of aldopyranoses in aqueous solution”, Aust. J. Chem. (1968) 21, 2737–2746CrossRefGoogle Scholar
  48. 48.
    Eliel, E. L.; Knoeber, M. C., “Conformational analysis. XVI. 1,3-Dioxanes”, J. Am. Chem. Soc. (1968) 90, 3444–3458CrossRefGoogle Scholar
  49. 49.
    Angyal, S. J.; McHugh, D. J., “Cyclitols. Part V. Paper ionophoresis, complex formation with borate, and the rate of periodic acid oxidations”, J. Chem. Soc. (1957) 1423–1431Google Scholar
  50. 50.
    Angyal, S. J.; McHugh, D. J., “Interaction energies of axial hydroxyl groups”, Chem. Ind. (London) (1956) 1147–1148Google Scholar
  51. 51.
    Angyal, S. J.; Klavins, J. E. unpublished dataGoogle Scholar
  52. 52.
    Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A., “Conformational Analysis”, Wiley-Interscience, New York, 1965, pp. 439–440Google Scholar
  53. 53.
    Edward, J. T., “Stability of glycosides to acid hydrolysis”, Chem. Ind. (London) (1955) 1102–1104Google Scholar
  54. 54.
    Lemieux, R. U.; Chü, N. J., Abstr. Papers Amer. Chem. Soc. Meeting (1958) 133, 31 NGoogle Scholar
  55. 55.
    Winstein, S.; Holness, N. J., “Neighboring carbon and hydrogen. XIX. t-Butylcyclohexyl Derivatives. Quantitative conformational analysis”, J. Am. Chem. Soc. (1955) 77, 5562–5578CrossRefGoogle Scholar
  56. 56.
    Eliel, E. L.; Lukacs, C. A., “Conformational analysis. II. Esterification rates of Cy- clohexanols”, J. Am. Chem. Soc. (1957) 79, 5986–5992CrossRefGoogle Scholar
  57. 57.
    Subbotin, O. A.; Sergeyev, N. M., “Conformational Equilibria in Cyclohexanol, Nitro cyclohexane, and Methylcyclohexane from the Low Temperature 13 C Nuclear Magnetic Resonance Spectra”, J. Chem. Soc. Chem. Commun. (1976) 141–142Google Scholar
  58. 58.
    Reeves, R. E., “The shape of pyranose rings”, J. Am. Chem. Soc. (1950) 72, 1499–1506CrossRefGoogle Scholar
  59. 59.
    Reeves, R. E., “Cuprammonium-glycoside complexes”, Adv. Carbohydr. Chem. (1951) 6, 107–134Google Scholar
  60. 60.
    Angyal, S. J., “The composition and conformation of sugars in solution”, Angew. Chem. Internat. Ed. (1969) 8, 157–166CrossRefGoogle Scholar
  61. 61.
    Perlin, A. S., “Hydroxyl proton magnetic resonance in relation to ring size, Substituent groups, and mutarotation of carbohydrates”, Canad. J. Chem. (1966) 44, 539–550CrossRefGoogle Scholar
  62. 62.
    Mackie, W.; Perlin, A. S., “Pyranose-Furanose and Anomeric Equilibria: Influence of solvent and of partial methylation”, Canad. J. Chem. (1966) 44, 2039–2049CrossRefGoogle Scholar
  63. 63.
    Lemieux, R. U.; Stevens, J. D., “The proton magnetic resonance spectra and tautomeric equilibria of aldoses in deuterium oxide”, Can. J. Chem. (1966) 44, 249–262CrossRefGoogle Scholar
  64. 64.
    Rudrum, M.; Shaw, D. F., “The structure and conformation of some monosaccharides in solution”, J. Chem. Soc. (1965) 52–57Google Scholar
  65. 65.
    Angyal, S. J.; Pickles, V. A.; Ahluwahlia, R., “Interaction energy between an axial methyl and an axial hydroxyl group in pyranoses”, Carbohydr. Res. (1966) 1, 365–370CrossRefGoogle Scholar
  66. 66.
    Angyal, S. J., “Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α: β ratios of aldopyranoses in aqueous solution”, Aust. J. Chem. (1968) 21, 2737–2746CrossRefGoogle Scholar
  67. 67.
    Brady, J. W., “Molecular dynamics simulations of alpha-D-glucose in aqueous solution”, J. Am. Chem. Soc. (1989) 111, 5155–5165CrossRefGoogle Scholar
  68. 68.
    Ha, S.; Gao, J.; Tidor, B.; Brady, J. W.; Karplus, M., “Solvent effect on the anomeric equilibrium in D-glucose: a free energy simulation analysis , J. Am. Chem. Soc. (1991) 113, 1553–1557CrossRefGoogle Scholar
  69. 69.
    Polavarapu, P. L.; Ewig, C. S., “Ab Initio computed molecular structures and energies of the conformers of glucose”, J. Comput. Chem. (1992) 13, 1255–1261CrossRefGoogle Scholar
  70. 70.
    Zheng, Y.-J.; Le Grand, S. M.; Merz, K. M., “Conformational preferences for hydroxyl groups in substituted tetrahydropyrans”, J. Comput. Chem. (1992) 13, 772–791CrossRefGoogle Scholar
  71. 71.
    Glennon, T. M.; Zheng, Y.-J.; LeGrand, S. M.; Shutzberg, B. A.; Merz, K. M., “A force field for monosaccharides and (1 4) linked polysaccharides”, J. Comput. Chem. (1994) 9, 1019–1040CrossRefGoogle Scholar
  72. 72.
    Barrows, S. E.; Dulles, F. J.; Cramer, C. J.; French, A. D.; Truhlar, D. G., “Relative stability of alternative chair forms and hydroxymethyl conformations of β-Image- glucopyranose”, Carbohydr. Res.(1995) 276, 219–251CrossRefGoogle Scholar
  73. 73.
    Woods, R. J.; Raymond A. D.; Edge, C. J.; Fraser-Reid, B., “Molecular mechanical and molecular dynamic simulations of glycoproteins and oligosaccharides. 1. GLYCAM_93 parameter development”, J. Phys. Chem. (1995) 99, 3832–3846CrossRefGoogle Scholar
  74. 74.
    Woods, R. J.; Smith, V. H.; Szarek, W. A.; Farazdel, A., “Ab initio LCAO-MO calculations on α -D-glucopyranose, β -D-fructopyranose, and their thiopyranoid-ring analogs. Application to a theory of sweetness”, J. Chem. Soc., Chem. Commun. (1987) 12, 937–939CrossRefGoogle Scholar
  75. 75.
    Senderowitz, H.; Parish, C.; Still, W. C, “Carbohydrates: United Atom AMBER* Pa- rameterization of Pyranoses and Simulations Yielding Anomeric Free Energies”, J. Am. Chem. Soc. (1996) 118, 2078–2086CrossRefGoogle Scholar
  76. 76.
    Reiding, S.; Schlenkrich, M.; Brickman, J., “Force field parameters for carbohydrates”, J. Comput. Chem. (1996) 17, 450–468CrossRefGoogle Scholar
  77. 77.
    Ott, K.-H.; Meyer, B., “Parametrization of GROMOS force field for oligosaccharides”, J. Comput. Chem. (1996) 17, 1068–1084CrossRefGoogle Scholar
  78. 78.
    Damm, W.; Frontera A.; Tirado-Rives, J.; Jorgensen, W. L., “OPLS all-atom force field for carbohydrates”, J. Comput. Chem. (1997) 18, 1955–1970CrossRefGoogle Scholar
  79. 79.
    Lii, J.-H.; Chen, K.-H.; Allinger, N. L., “Alcohols, ethers, carbohydrates, and related compounds. IV. Carbohydrates”, J. Comput. Chem. (2003) 24, 1504–1513CrossRefGoogle Scholar
  80. 80.
    Guler, L. P.; Yu, Y.-Q.; Kenttämaa, H. I.,“An experimental and computational study of the gas-phase structures of five-carbon Monosaccharides”, J. Phys. Chem. A (2002) 106, 6754–6764CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations