Carbohydrates pp 487-516 | Cite as

Higher-Carbon Monosaccharides

  • Momcilo Miljković


Higher-carbon sugars are defined as sugars having more than six carbon atoms in their carbon chain. Thus monosaccharides containing seven or more consecutive carbon atoms belong to this class of monosaccharides, e.g., heptoses, octoses, nonoses, decoses. There are many reviews written on this topic.


Sialic Acid Total Synthesis Macrocyclic Lactone Wittig Reaction Asymmetric Epoxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Secrist, J. A., III; Barnes, K. D.; Wu, S.-R., in Trends in Synthetic Carbohydrate Chemistry, ACS Symposium Series 386, Horton, D.; Hawkins, L. D.; McGarvey, G. J. (Eds.), American Chemical Society, Washington, D. C. (1989), p. 93Google Scholar
  2. 2.
    Danishefsky, S. J.; DeNinno, M. P., “Totally Synthetic Routes to the Higher Monosaccharides”, Angew. Chem. Int. Ed. Engl. (1987) 26, 15–23CrossRefGoogle Scholar
  3. 3.
    Danishefsky, S. J., “Cycloaddition and cyclocondensation reactions of highly functionalized dienes: applications to organic synthesis”, Chemtracts: Organic Chem. (1989) 2, 273–97Google Scholar
  4. 4.
    Achmatowich, O. in Organic Synthesis Today and Tomorrow, Trost, B. M.; Hutchinson, C. R., (Eds.), Pergamon Press, Oxford (1981) p. 307Google Scholar
  5. 5.
    Brimacombe, J. S., in Studies in Natural Products Chemistry, Vol 4, Part C, Atta-ur-Rahman (Ed.), Elsevier, Amsterdam (1989) p. 157Google Scholar
  6. 6.
    Witchak, Z. J., in Studies in Natural Products Chemistry, Vol. 3, Part B, Atta-ur-Rahman (Ed.), Elsevier, Amsterdam (1989) p. 209Google Scholar
  7. 7.
    Garner, P. P. in Studies in Natural Products Chemistry, Vol. 1, Part A, Atta-ur-Rahman (Ed.), Elsevier, Amsterdam (1988) p. 397Google Scholar
  8. 8.
    Danishefsky, S. J.; DeNinno, M. P.; Audia, J. E.; Schulte, G., in Trends in Synthetic Carbohydrate Chemistry, ACS Symposium Series 386, Horton, D.; Hawkins, L. D.; McGarvey, G. J. (Eds.), American Chemical Society, Washington, D. C. (1989) p. 160Google Scholar
  9. 9.
    Vogel, P.; Auberson, Y.; Bimwala, M.; de Guchteneere, E.; Vieira, E.; Wagner, G., in Trends in Synthetic Carbohydrate Chemistry, ACS Symposium Series 386, Horton, D.; Hawkins, L. D.; McGarvey, G. J. (Eds.), American Chemical Society, Washington, D. C. (1989) p. 197Google Scholar
  10. 10.
    Casiraghi, G.; Rassu, G., “Aspects of Modern Higher Carbon Sugar Synthesis”, in Studies in Natural Products Chemistry, Atta-ur-Rahman (Ed.), Vol 11 (1992), Elsevier Publishers, Amsterdam, pp. 429–480Google Scholar
  11. 11.
    Gottschalk, A., “N-substituted isoglucosamine released from mucoproteins by the influenza virus enzyme”, Nature (London) (1951) 167, 845–847CrossRefGoogle Scholar
  12. 12.
    Schauer, R., “Chemistry, Metabolism, and Bilogical Functions of Sialic Acid”, Adv. Carbohydr. Chem. Biochem. (1982) 40, 131CrossRefGoogle Scholar
  13. 13.
    Schauer, R., Sialic Acids, Springer Verlag, Vienna/New York, 1982Google Scholar
  14. 14.
    Magerlein, B. J. in Perlman, D. (Ed.), “Structure Activity Relationships Among the Semisynthetic Antibiotics”, Academic Press, New York, 1977, pp. 601–650Google Scholar
  15. 15.
    Isono, K.; Crain, P. F.; McCloskey, J. A., “Isolation and structure of octosyl acids. Anhydrooctose uronic acid nucleosides”, J. Am. Chem. Soc. (1975) 97, 943–945CrossRefGoogle Scholar
  16. 16.
    More, J. D.; Finney, N. S., “Synthesis of the Bicyclic Core of the Nucleoside Antibiotic Octosyl Acid A”, J. Org. Chem. (2006) 71, 2236–2241CrossRefGoogle Scholar
  17. 17.
    Azuma, T.; Isono, K., “Transnucleosidation: an improved method for transglycosylation from pyrimidines to purines”, Chem. Pharm. Bull. (1977) 25, 3347–3353Google Scholar
  18. 18.
    Bloch, A., “Uridine 3,5-monophosphate (cyclic UMP). I. Isolation from rat liver ex tracts”, Biochem. Biophys. Res. Commun. (1975) 64, 210–218CrossRefGoogle Scholar
  19. 19.
    De Rosa, M.; De Rosa, S.; Gambacorta, A.; Bulock, J. O., “Structure of calditol, a new branched-chain nonitol, and of the derived tetraether lipids in thermoacidophile archaebacteria of the Caldariella group”, Phytochemistry (1980) 19, 249–254CrossRefGoogle Scholar
  20. 20.
    De Rosa, M.; Esposito, E.; Gambacorta, A.; Nicolaus, B.; BuLock, J. D.,“Effects of temperature on ether lipid composition of Caldariella acidophila”, Phytochemistry (1980) 19, 827–831CrossRefGoogle Scholar
  21. 21.
    Blériot, Y.; Untersteller, E.; Fritz, B.; Sinaÿ, P., “Total Synthesis of Calditol: Structural Clarification of this Typical Component of Archaea Order Sulfolobales”, Chem. Eur. J. (2002) 8, 240–246CrossRefGoogle Scholar
  22. 22.
    Cadogan, J. I. (Ed.), Organophosphorus Reagents in Organic Synthesis, Academic Press, New York, 1979Google Scholar
  23. 23.
    Bestmann, H. J., “Synthesis of polyenes via phosphonium ylids”, Pure Appl. Chem. (1979) 51, 515–533CrossRefGoogle Scholar
  24. 24.
    Wadsworth, W. S., Org. Reactions (1978) 25, 73Google Scholar
  25. 25.
    Aoyagi, S.; Fujimaki, S.; Kibayashi, C., “Total Synthesis of (+)- α -Homonojirimycin”, J. Chem. Soc. Chem. Commun. (1990) 1457–1459Google Scholar
  26. 26.
    Iida, H.; Yamazaki, N.; Kibayashi, C., “Total Synthesis if (+)-Nojirimycin and (+)-1- Deoxynojirimycin”, J. Org. Chem. (1987) 52, 3337–3342CrossRefGoogle Scholar
  27. 27.
    Aoyagi, S.; Fujimaki, S.; Yamazaki, N.; Kibayashi, C., “Synthesis of (+)-galactostatin”, Heterocycles (1990) 30, 783–787CrossRefGoogle Scholar
  28. 28.
    Katsuki, T.; Sharpless, K. B., “The first practical method for asymmetric epoxidation”, J. Am. Chem. Soc. (1980) 102, 5974–5976CrossRefGoogle Scholar
  29. 29.
    Overman, L. E.; Flippin, A., “Facile aminolysis of epoxides with diethylaluminum amides”, Tetrahedron Lett. (1981) 22, 195–198CrossRefGoogle Scholar
  30. 30.
    Goto, T.; Toya, Y.; Ohgi, T.; Kondo, T., “Structure of amipurimycin, a nucleoside antibiotic having a novel branched sugar moiety”, Tetrahedron Lett. (1982) 23, 1271–1274CrossRefGoogle Scholar
  31. 31.
    Seto, H.; Koyama, M.; Ogino, H.; Tsuruoka, T.; Shigeharu Inouye, S.; Otake, N., “The structures of novel nucleoside antibiotics, miharamycin A and miharamycin B”, Tetrahedron Lett. (1983) 24, 1805–1808CrossRefGoogle Scholar
  32. 32.
    Bessodes, M.; Komiotis, D.; Antonakis, K., “Stereoselective Synthesis of Aminoacyl Hepto Glycosides; Synthetic Tools for Biochemical Interactions Studies”, J. Chem. Soc. Perkin Trans. I (1989) 41–45CrossRefGoogle Scholar
  33. 33.
    Caron, M.; Sharpless, K. B., “Titanium isopropoxide-mediated nucleophilic openings of 2,3-epoxy alcohols. A mild procedure for regioselective ring-opening”, J. Org. Chem. (1985) 50, 1557–1560CrossRefGoogle Scholar
  34. 34.
    Brimacombe, J. S.; Kabir, A. K. M. S., “The synthesis of some seven-carbon sugars via the osmylation of olefinic sugars”, Carbohydr. Res. (1986) 150, 35–51CrossRefGoogle Scholar
  35. 35.
    Brimacombe, J. S.; Kabir, A. K. M. S., “Convenient Synthesis of L-glycero-D-manno-heptose”, Carbohydr. Res. (1986) 152, 329–334CrossRefGoogle Scholar
  36. 36.
    Brimacombe, J. S.; Kabir, A. K. M. S., “A synthesis of L-galacto-D-galacto-decose”, Carbohydr. Res. (1986) 152, 335–338CrossRefGoogle Scholar
  37. 37.
    Brimacombe, J. S.; Hanna, R.; Kabir, A. K. M. S.; Bennet, F.; Taylor, I. D., “Highercarbon Sugars. Part 1. The Synthesis of Some Octose Sugars via the Osmylation of Unsaturated Precursors”, J. Chem. Soc. Perkin Trans.I (1986) 815–821CrossRefGoogle Scholar
  38. 38.
    Brimacombe, J. S.; Hanna, R.; Kabir, A. K. M. S. , “Higher-carbon Sugars. Part 2.The Synthesis of Some Decitols via the Osmylation of Unsaturated Precursors”, J. Chem. Soc. Perkin Trans. I (1986) 823–828Google Scholar
  39. 39.
    Brimacombe, J. S.; Kabir, A. K. M. S.; Bennet, F., “Higher-carbon Sugars. Part 6. The Synthesis of Some Octose Sugars via the Epoxidation and Unsaturated Precursors”, J. Chem. Soc. Perkin Trans. (1986) 1677–1680Google Scholar
  40. 40.
    Brimacombe, J. S.; Kabir, A. K. M. S., “Higher-carbon Sugars. Part 7. A Synthesis of L-lyxo-L-altro-nonitol, A New Nonitol”, Carbohydr. Res. (1986) 158, 81–89CrossRefGoogle Scholar
  41. 41.
    Brimacombe, J. S.; Hanna, R.; Kabir, A. K. M. S. , “Higher-carbon Sugars. Part 8. The Synthesis of Some Decitols via the Epoxidation of Unsaturated Precursors”, J. Chem. Soc. Perkin Trans. 1 (1987) 2421–2426CrossRefGoogle Scholar
  42. 42.
    VanRheenan, V.; Kelly, R. C.; Cha, D. Y., “An improved catalytic OsO 4 oxidation of olefins to cis-1,2-glycols using tertiary amine oxides as the oxidant”, Tetrahedron Lett. (1976) 17, 1973–1976Google Scholar
  43. 43.
    Cha, J. K.; Christ, W. J.; Kishi, Y., “On stereochemistry of osmium tetraoxide oxidation of allylic alcohol systems. Empirical rule”, Tetrahedron (1984) 40, 2247–2255CrossRefGoogle Scholar
  44. 44.
    Sharpless, K. B.; Behrens, C. H.; Katsuki, T.; Lee, A. M. W.; Martin, V. S.; Takatani, M.; Viti, S. M.; Walker, F. J.; Woodard, S. S., “Stereo and regioselective openings of chiral 2,3-epoxy alcohols. Versatile routes to optically pure natural products and drugs. Unusual kinetic resolutions”, Pure Appl. Chem. (1983) 55, 589–604CrossRefGoogle Scholar
  45. 45.
    Pfenninger, A., “Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation”, Synthesis (1986) 89–116Google Scholar
  46. 46.
    Secrist, J. A., III; Barnes, K. D., “Synthesis of Methyl Peracetyl α -Hikosaminide, the Undecose Portion of the Nucleoside Antibiotic Hikizimycin”, J. Org, Chem. (1980) 45, 4526–4528CrossRefGoogle Scholar
  47. 47.
    Miljkovic, M.; Habash-Marino, M., “Synthesis of higher sugars as precursors for the synthesis of chiral polyhydroxylated macrocyclic lactones”, J. Serb. Chem. Soc. (2000) 65, 497–505Google Scholar
  48. 48.
    Habash-Marino, M., Ph.D. Dissertation, “Synthesis of Chiral Macrocyclic Lactones from Monosaccharides”, The Pennsylvania State University, 1983Google Scholar
  49. 49.
    Corey, E. J.; Nicolaou, K. C., “Efficient and mild lactonization method for the synthesis of macrolides”, J. Am. Chem. Soc. (1974) 96, 5614–5616CrossRefGoogle Scholar
  50. 50.
    Corey, E. J.; Nicolaou, K. C.; Melvin, L. S., “Synthesis of novel macrocyclic lactones in the prostaglandin and polyether antibiotic series”, J. Am. Chem. Soc. (1975) 97, 653–654CrossRefGoogle Scholar
  51. 51.
    Corey, E. J.; Nicolaou, K. C.; Melvin, L. S., “Synthesis of brefeldin A, carpaine, vertaline, and erythronolide B from nonmacrocyclic precursors”, J. Am. Chem. Soc. (1975) 97, 654–655CrossRefGoogle Scholar
  52. 52.
    Corey, E. J.; Nicolaou, K. C.; Toru, T., “Total synthesis of (+-)-vermiculine”, J. Am. Chem. Soc. (1975) 97, 2287–2288CrossRefGoogle Scholar
  53. 53.
    Corey, E. J.; Ulrich, P.; Fitzpatrick, J. M., “A stereoselective synthesis of (+-)-11- hydroxy-trans-8-dodecenoic acid lactone, a naturally occurring macrolide from Cephalosporium recifei”, J. Am. Chem. Soc. (1976) 98, 222–224CrossRefGoogle Scholar
  54. 54.
    Aebischer, B.; Bieri, J. H.; Prewo, R.; Vasella, A., “Synthese von Ketosen durch Kettenvelängerungen von 1-Desoxy-1-nitro-aldosen. Nucleophile Additionen und Solvolyse von Nitroaethern”, Helv. Chim. Acta (1982) 65, 2251–2272CrossRefGoogle Scholar
  55. 55.
    Chapleur, Y., “A short route to 2-C-alkyl-2-deoxy-sugars from D-mannose”, J. Chem. Soc. Chem. Commun. (1983) 141–142Google Scholar
  56. 56.
    Jarosz, S.; Fraser-Reid, B., “Synthesis of a higher carbon sugar via directed aldol condensation”, Tetrahedron Lett. (1989) 30, 2359–2362CrossRefGoogle Scholar
  57. 57.
    Yu, K.-L.; Handa, S.; Tsang, R.; Fraser-Reid, B., “Carbohydrate-derived partners display remarkably high stereoselectivity in aldol coupling reactions”, Tetrahedron (1991) 47, 189–204CrossRefGoogle Scholar
  58. 58.
    Handa, S.; Tsang, R.; McPhail, A. T.; Fraser-Reid, B., “The pyranoside ring as a nucleophile in aldol condensations”, J. Org. Chem. (1987) 52, 3489–3491CrossRefGoogle Scholar
  59. 59.
    Yu, K.-L.; Fraser-Reid, B., “Facial-selective carbohydrate-based aldol additions”, J. Chem. Soc. Chem. Commun. (1989) 1442–1445Google Scholar
  60. 60.
    Heathcock, C. H.; White, C. T.; Morrison, J. J.; Van Derveer, D., “Acyclic Stereose lection.11. Double Stereodifferentitation as a Method for Achieving Superior Crams rule selectivity in aldol condensation with chiral Aldehydes”, J. Org. Chem. (1981) 46, 1296–1309CrossRefGoogle Scholar
  61. 61.
    Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R., “Double stereodifferentiation and a new strategy for stereocontrol in organic syntheses” Angew. Chem. (1985) 97, 1–31CrossRefGoogle Scholar
  62. 62.
    Jurczak, J.; Pikul, S.; Bauer, T., “Tetrahedron report number 195. (R)- and (S)-2,3–0- isopropylideneglyceraldehyde in stereoselective organic synthesis”, Tetrahedron (1986) 42, 447–488CrossRefGoogle Scholar
  63. 63.
    Frye, S. V.; Eliel, E. L.; Cloux, R., “Rapid-injection nuclear magnetic resonance investigation of the reactivity of alpha- and beta-alkoxy ketones with dimethyl magnesium: kinetic evidence for chelation”, J. Am. Chem. Soc. (1987) 109, 1862–1863CrossRefGoogle Scholar
  64. 64.
    Jefford, C. W.; Jaggi, D.; Sledeski, A. W.; Boukouvalas, J. “New methodology for the synthesis of biologically active lactones”, in Studies in Natural Products Chemistry, Vol 3, Part B, Atta-ur-Rahman (Ed.), Elsevier, Amsterdam, 1989, p. 157–171Google Scholar
  65. 65.
    Jefford, C. W.; Sledeski, A. W.; Boukouvalas, J., “A direct synthesis of (±)- eldanolide via the highly regioselective prenylation of 2-trimethylsiloxyfuran”, Tetrahedron Lett. (1987) 28, 949–950CrossRefGoogle Scholar
  66. 66.
    Jefford, C. W.; Jaggi, D.; Boukouvalas, J., “Diastereoselectivity in the directed aldol condensation of 2-trimethylsiloxyfuran with aldehydes. A stereodivergent route to threo and erythro δ-hydroxy-γ-lactones”, Tetrahedron Lett. (1987) 28, 4037–4040CrossRefGoogle Scholar
  67. 67.
    Jefford, C. W.; Jaggi, D.; Bernardinelli, G.; Boukouvalas, J., “The synthesis of (±)- cavernosine”, Tetrahedron Lett. (1987) 28, 4041–4044CrossRefGoogle Scholar
  68. 68.
    Casiraghi, G.; Colombo, L.; Rassu, G.; Spanu, P., “Synthesis of enantiomerically pure 2,3-dideoxy-hept-2-enono-1,4-lactone derivatives via-diastereoselective addition of 2-(trimethylsiloxy)furan to D-glyceraldehyde and D-serinal-based three-carbon synthons”, Tetrahedron Lett. (1989) 30, 5325–5328CrossRefGoogle Scholar
  69. 69.
    Casiraghi, G.; Colombo, L.; Rassu, G.; Spanu, P.; Gasparri, F.; Ferrari Belicchi, M., “The four-carbon elongation of three-carbon chiral synthons using 2-(trimethylsiloxy)furan: highly stereocontrolled entry to enantiomerically pure seven-carbon α,β- unsaturated 2,3-dideoxy-aldonolactones”, Tetrahedron (1990) 46, 5807–5824CrossRefGoogle Scholar
  70. 70.
    Casiraghi, G.; Colombo, L.; Rassu, G.; Spanu, P., “The four-carbon elongation of aldehydo sugars using 2-(trimethylsiloxy)furan: a butenolide route to higher monosaccharides”, J. Org. Chem. (1990) 55, 2565–2567CrossRefGoogle Scholar
  71. 71.
    Gasparri, F. G.; Ferrari Belicchi, M.; Belletti, D.; Casiraghi, G.; Rassu, G., “Crystal and molecular structure of (-)-1,2-O-isopropylidene-3-O-methyl-7,8-dideoxy- β -L- glycero-D-gluco-non-7-enofuranurono-9,6-lactone, C 13 H 18 O 7”, J. Crystallog. Spect. Res., (1991) 21, 261–264CrossRefGoogle Scholar
  72. 72.
    Danishefsky, S. J., “Siloxy dienes in total synthesis”, Acct. Chem. Res. (1981) 14, 400–406CrossRefGoogle Scholar
  73. 73.
    Danishefsky, S. J.; Kerwin, J. F.; Kobayashi, S., “Lewis acid catalyzed cyclocondensations of functionalized dienes with aldehydes”, J. Am. Chem. Soc. (1982) 104, 358–360CrossRefGoogle Scholar
  74. 74.
    Danishefsky, S. J.; Maring, C., “A new approach to the synthesis of hexoses: an entry to (.+-.)-fucose and (.+-.)-daunosamine”, J. Am. Chem. Soc. (1985) 107, 1269–1274CrossRefGoogle Scholar
  75. 75.
    Bednarsky, M.; Danishefsky, S. J., “Mild Lewis acid catalysis: tris(6,6,7,7,8,8,8- heptafluoro-2,2-dimethyl-3,5-octanedionato)europium-mediated hetero-Diels-Alder reaction”, J. Am. Chem. Soc. (1983) 105, 3716–3717CrossRefGoogle Scholar
  76. 76.
    Danishefsky, S. J.; Bednarsky, M., “On the acetoxylation of 2,3-dihydro-4-pyrones: a concise, fully synthetic route to the glucal stereochemical series”, Tetrahedron Lett. (1985) 26, 3411–3412Google Scholar
  77. 77.
    Luche, J. L.; Gemal, A. L., “Lanthanoids in organic synthesis. 5. Selective reductions of ketones in the presence of aldehydes”, J. Am. Chem. Soc. (1979) 101, 5848–5849CrossRefGoogle Scholar
  78. 78.
    Danishefsky, S. J.; Hungate, R., “The total synthesis of octosyl acid A: a new depar ture in organostannylene chemistry”, J. Am. Chem. Soc. (1986) 108, 2486–2487CrossRefGoogle Scholar
  79. 79.
    Danishefsky, S. J.; Barbachyn, M., “A fully synthetic route to tunicaminyluracil”, J. Am. Chem. Soc. (1985) 107, 7761–7762CrossRefGoogle Scholar
  80. 80.
    Danishefsky, S. J.; Maring, C., “A fully synthetic route to hikosamine”, J. Am. Chem. Soc. (1985) 107, 7762–7764CrossRefGoogle Scholar
  81. 81.
    Danishefsky, S. J.; Maring, C. J.; Barbachyn, M. R.; Segmuller, B. E., “An approach to the Synthesis of Carbon-Carbon Linked Disaccharides”, J. Org. Chem. (1984) 49, 4564–4565CrossRefGoogle Scholar
  82. 82.
    Cornforth, J. W.; Daines, M. E.; Gottschalk, A., “Synthesis of N-acetylneuraminic acid (lactaminic acid, O-sialic acid)”, Proc. chem. Soc. (London) (1957) 25–26Google Scholar
  83. 83.
    Cornforth, J. W.; Firth, M. E.; Gottschalk, A., “The synthesis of N-acetylneuraminic acid”, Biochem. J. (1958) 68, 57–61Google Scholar
  84. 84.
    Carroll, P. M.; Cornforth, J. W., “Preparation of N-acetylneuraminic acid from N-acetyl-D-mannosamine”, Biochim. Biophys. Acta (1960) 39, 161–162CrossRefGoogle Scholar
  85. 85.
    Kuhn, R.; Baschang, G., “Aminozucker-Synthesen, XXV. Synthese der Lactaminsäure”, Liebigs Ann. Chem. (1962) 659, 156–163CrossRefGoogle Scholar
  86. 86.
    Danishefsky, S. J.; DeNinno, M. P.; Chen, S., “Stereoselective Total Synthesis of the Naturally Occurring Enantiomers of N-Acetylneuraminic Acid and 3-Deoxy-D- manno-2-octulosonic Acid. A New and Stereospecific Approach to Sialo and 2- Deoxy-D-manno-octulosonic Acid Conjugates”, J. Am. Chem. Soc. (1988) 110, 3929–3940CrossRefGoogle Scholar
  87. 87.
    Danishefsky, S. J.; DeNinno, M. P., “The Total Synthesis of (±)-N-Acetylneuraminic Acid (NANA): A Remarkable Hydroxylation of a (Z)-Enoate”, J. Org. Chem. (1986) 51, 2615–2617CrossRefGoogle Scholar
  88. 88.
    Gemal, A. L.; Luche, J. L., “Lanthanoids in organic synthesis. 6. Reduction of.alpha.-enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects”, J. Am. Chem. Soc. (1981) 103, 5454–5459CrossRefGoogle Scholar
  89. 89.
    Still, W. C.; Gennari, C., “Direct synthesis of Z-unsaturated esters. A useful modification of the Horner-Emmons olefination”, Tetrahedron Lett. (1983) 24, 4405–4408CrossRefGoogle Scholar
  90. 90.
    Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B., “A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds”, J. Org. Chem. (1981) 46, 3936–3938CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations