Advertisement

Carbohydrates pp 469-486 | Cite as

Carbohydrate-Based Antibiotics

  • Momcilo Miljković
Chapter

Abstract

Antibiotics are most often defined as bacterial or fungal products that inhibit the growth of other microorganisms. There is a broader definition proposed [1] that defines antibiotics as chemical compounds derived from or produced by living organisms which are capable, in small concentration, to inhibit the life processes of microorganisms. This definition, however, does not include a vast number of chemically modified (semisynthetic) and synthetic antibiotics. Antibiotics are isolated from bacteria, yeast, molds, algae, and lichens, as well as from higher plants.

Keywords

Amino Sugar Total Synthesis Aminoglycoside Antibiotic Streptomyces Hygroscopicus Kanamycin Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Benedict, R. G.; Langlykke, A. F., “Antibiotics”, Ann. Rev. Microbiol. (1947) 1, 193–236CrossRefGoogle Scholar
  2. 2.
    Umezawa, S., “Structures and Synthesis of Aminoglycoside Antibiotics”, Adv. Carbohydr. Chem. Biochem. (1974) 30, 111–182CrossRefGoogle Scholar
  3. 3.
    Umezawa, H.; Hooper, I. R. (Eds.), “Aminoglycoside Antibiotics”, Springer Verlag, New York, Heidelberg, 1982Google Scholar
  4. 4.
    Umezawa, H.; Ueda, M.; Maeda, K.; Yagishita, K.; Kondo, S.; Okami, Y.; Utahara, R.; Osato, Y.; Nitta, K.; Takeuchi, T., “Production and isolation of a new antibiotic, kanamycin”, J. Antibiot. (Japan) (1957) 10A, 181–188Google Scholar
  5. 5.
    Cron, M. J.; Johnson, D. L.; Palermiti, F. M.; Perron, Y.; Taylor, H. D.; Whitehead, D. F.; Hooper, I. R., “Kanamycin. I. Characterization and Acid Hydrolysis Studies”, J. Am. Chem. Soc. (1958) 80, 752–753CrossRefGoogle Scholar
  6. 6.
    Cron, M. J.; Fardig, O. B.; Johnson, D. L.; Schmitz, H.; Whitehead, D. F.; Hooper, I. R.; Lemieux, R. U., “Kanamycin. II. The Hexosamine Units”, J. Am. Chem. Soc. (1958) 80, 2342–2342CrossRefGoogle Scholar
  7. 7.
    Cron, M. J.; Evans, D. L.; Palermiti, F. M.; Whitehead, D. F.; Hooper, I. R.; Chu, P.; Lemieux, R. U., “Kanamycin. V. The Structure of Kanosamine”, J. Am. Chem. Soc. (1958) 80, 4741–4742CrossRefGoogle Scholar
  8. 8.
    Ogawa, H.; Ito, T.; Kondo, S., “Chemistry of Kanamycin. V. The Structure of Kanamycin”, J. Antibiotics (Japan) (1958) 11A, 169–170Google Scholar
  9. 9.
    Umezawa, S.; Tatsuta, K.; Tsuchiya, T., “Studies of Aminosugars. XII. The Absolute Structure of Kanamycin as Determined by a Copper Complex Method”, Bull Chem. Soc. Japan (1966) 39, 1244–1248CrossRefGoogle Scholar
  10. 10.
    Koyama, G.; Litaka, Y.; Maeda, K.; Umezawa, H., “The crystal structure of kanamycin”, Tetrahedron Lett. (1968) 9, 1875–1879Google Scholar
  11. 11.
    Hitchens, M.; Rinehart, K. L., Jr.,, “Chemistry of the Neomycins. XII. The Absolute Configuration of Deoxystreptamine in the Neomycins, Paromomycins and Kanamycins”, J. Am. Chem. Soc. (1963) 85, 1547–1548CrossRefGoogle Scholar
  12. 12.
    Ito, T.; Nishio, M.; Ogawa, H., “The Structure of Kanamycin B”, J. Antibiot. (Japan) (1964) 17A, 189Google Scholar
  13. 13.
    Murase, M., “Structural studies on kanamycin C”. J. Antibiot. (Japan) (1961) 14A, 367Google Scholar
  14. 14.
    Umezawa, S.; Koto, S.; Tatsuta, K.; Hineno, H.; Nishimura, Y.; Tsumura, T., “The total Synthesis of Kanamycin B”, J. Antibiot. (Japan)(1968) 21, 424–425Google Scholar
  15. 15.
    Umezawa, S.; Koto, S.; Tatsuta, K.; Hineno, H.; Nishimura, Y.; Tsumura, T., “Studies of Aminosugars. XXIII. The Total Synthesis of Kanamycin B”, Bull. Chem. Soc. (Japan) (1969) 42, 537–541CrossRefGoogle Scholar
  16. 16.
    Umezawa, S.; Koto, S.; Tatsuta, K.; Tsumura, T., “The total synthesis of kanamycin C”, Bull Chem. Soc. (Japan) (1968) 41, 533CrossRefGoogle Scholar
  17. 17.
    Umezawa, S.; Koto, S.; Tatsuta, K.; Tsumura, T., “The total synthesis of kanamycin C”, J. Antibiot. (Japan) (1968) 21A, 162–163Google Scholar
  18. 18.
    Umezawa, H.; Okanishi, M.; Kondo, S.; Hamana, K.; Utahara, R.; Maeda, K.; Mitsuhashi, S., “Phosphorylative inactivation of aminoglycosidic antibiotics by Escherichia coli carrying R factor”, Science (1967) 157, 1559–1561Google Scholar
  19. 19.
    Umezawa, H.; Okanishi, M.; Utahara, R.; Maeda, K.; Kondo, S., “Isolation and structure of kanamycin inactivated by a cell free system of kanamycin resistant E. Coli”, J. Antibiot. (1967) 20, 136–141Google Scholar
  20. 20.
    Benveniste, R.; Davies, J., “Enzymatic acetylation of aminoglycoside antibiotics by Escherichia coli carrying R factor”, Biochemistry (1971) 10, 1787–1796CrossRefGoogle Scholar
  21. 21.
    Brzezinska, M.; Benveniste, R.; Davies, J.; Daniels, P.; Weinstein, J. L., “Gentamicin resistance in strains of Pseudomonas aeruginosa mediated by enzymatic N-acetylation of the deoxystreptamine moiety”, Biochemistry (1972) 11, 761–765CrossRefGoogle Scholar
  22. 22.
    Kawabe, H.; Mitsuhashi, S., “Acetylation of dideoxykanamycin B by Pseudomonas aeruginosa”, Jpn. J. Microbiol. (1972) 16, 436–437Google Scholar
  23. 23.
    Yamamoto, H.; Yasigawa, M.; Naganawa, H.; Kondo, S.; Takeuchi, T.; Umezawa, H., “Kanamycin 6-acetate and ribostamycin 6-acetate, enzymatically inactivated products by Pseudomonas aeruginosa”, J. Antibiot. (1972) 25, 746–747Google Scholar
  24. 24.
    Chevereau, M.; Daniels, P. J. L.; Davies, J.; LeGoffic, F., “Aminoglycoside resistance in bacteria mediated by gentamicin acetyltransferase II, an enzyme modifying the 2- amino group of aminoglycoside antibiotics”, Biochemistry (1974) 13, 598–603CrossRefGoogle Scholar
  25. 25.
    Okanishi, M.; Kondo, S.; Utahara, R.; Umezawa, H., “Phosphorylation and inactivation of aminoglycoside antibiotics by E. coli carrying R factors”, J. Antibiot. (1968) 21, 13–21Google Scholar
  26. 26.
    Umezawa, H.; Doi, O.; Ogura, M.; Kondo, S.; Tanaka, N., “Phosphorylation and in activation of kanamycin by Pseudomonas aeruginosa”, J. Antibiotics (1968) 21, 154–155Google Scholar
  27. 27.
    Ozanne, B.; Benveniste, R.; Tipper, D.; Davies, J., “Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors”, J. Bacteriol. (1969) 100, 1144–1146Google Scholar
  28. 28.
    Davies, J.; Brzezinska, M.; Benveniste, R., “R Factors: biochemical mechanisms of resistance to aminoglycoside antibiotics”, Ann. N. Y. Acad. Sci. (1971) 182, 226–233CrossRefGoogle Scholar
  29. 29.
    Yagisawa, M.; Yamamoto, H.; Naganawa, H.; Kondo, S.; Takeuchi, R.; Umezawa, H., “A new enzyme in Escherichia coli carrying R factor phosphorylating 3-hydroxyl of butirosin A, kanamycin, neamine, and ribostamycin”, J. Antibiot. (1972) 25, 748–750Google Scholar
  30. 30.
    Brzezinska, M.; Davies, J., “Two enzymes which phosphorylate neomycin and kanamycin in Escherichia coli strains carrying R factors”, Antimicrob. Agents Chemother. (1973) 3, 266–269Google Scholar
  31. 31.
    Umezawa, H.; Takasawa, S.; Okanishi, M.; Utahara, R., “Adenylstreptomycin, a product of streptomycin inactivated by E. coli carrying R factor”, J. Antibiot. (1968) 21, 81–82Google Scholar
  32. 32.
    Benveniste, R; Daviess, J., “R -factor mediated gentamicin resistance: a new enzyme which modifies aminoglycoside antibiotics”, F.E.B.S, Lett. (1971) 14, 293–296CrossRefGoogle Scholar
  33. 33.
    Yagisawa, M.; Naganawa, H.; Kondo, S.; Hamada, M.; Takeuchi, T.; Umezawa, H., “Adenylyldeoxykanamycin B, a product of the inactivation of dideoxy kanamycin B by Escherichia coli carrying R factor”, J. Antibiot. (1971) 24, 911–912Google Scholar
  34. 34.
    Umezawa, S.; Tsuchiya, T.; Muto, R.; Nishimura, Y.; Umezawa, H., “Synthesis of 3- deoxykanamycin effective against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa”, J. Antibiot. (1971) 24, 274–275Google Scholar
  35. 35.
    Umezawa, H.; Umezawa, S.; Tsuchiya, T.; Okazaki, Y., “3, 4-Dideoxykanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa”, J. Antibiot. (1971) 24, 485–487Google Scholar
  36. 36.
    Umezawa, S.; Umezawa, H.; Okazaki, Y.; Tsuchiya, T., “Studies on aminosugars. XXII. Synthesis of 3, 4-dideoxykanamycin B”. Bull. Soc. Chem. Jpn. (1972) 45, 3624–3628CrossRefGoogle Scholar
  37. 37.
    Kawaguchi, H.; Naito, T.; Nakagawa, S.; Fujisawa, K., “BB-K8, a new semisynthetic aminoglycoside antibiotic”, J. Antibiot. ((1972) 25, 695–708Google Scholar
  38. 38.
    Weinstein, M. J.; Luedemann, G. M.; Oden, E. M.; Wagman, G. H., “Gentamycin, a New Broad-Spectrum Antibiotic Complex”, Antimicrob. Agents Chemother. (1963) 161, 1–7Google Scholar
  39. 39.
    Maehr, H.; Schaffner, C. P., “Chemistry of the gentamycins. I. Characterization and gross structure of gentamycin A”, J. Am. Chem. Soc. (1967) 89, 6787–6788CrossRefGoogle Scholar
  40. 40.
    Maehr, H.; Schaffner, C. P., “Chemistry of the gentamicins. II. Stereochemistry and synthesis of gentosamine. Total structure of gentamicin A”, J. Am. Chem. Soc. (1970) 92, 1697–1700CrossRefGoogle Scholar
  41. 41.
    Nagabhushan, T. L.; Turner, W. N.; Daniels, P. J. L.; Morton, J. B., “Gentamicin antibiotics. 7. Structures of the gentamicin antibiotics A1, A3, and A4”, J. Org. Chem. (1975) 40, 2830–2834CrossRefGoogle Scholar
  42. 42.
    Nagabhushan, T. L.; Daniels, P. J. L.; Jaret, R. S.; Morton, J. B., “Gentamicin antibiotics. 8. Structure of gentamicin A2”, J. Org. Chem. (1975) 40, 2835–2936CrossRefGoogle Scholar
  43. 43.
    Waitz, J. A.; Moss, E. L., Jr; Oden, E. M.; Wagman, G. H.; Weinstein, M. J., “Biological activity of Sch 14342, an aminoglycoside antibiotic coproduced in the gentamicin fermentation”, Antimicrob. Agents. Chemother. (1972) 2, 464–469Google Scholar
  44. 44.
    Cooper, D. J.; Daniels, P. J. L.; Yudis, M. D.; Marigliano, H. M.; Guthrie, R. D.; Bukhari, S. T. K., “The gentamicin antibiotics. Part III. The gross structures of the gentamicin C components”, J. Chem. Soc. (C) (1971) 3126–3129Google Scholar
  45. 45.
    Chmielewski, M.; Konovał, A.; Zamojski, A., “The synthesis of racemic purpurosamine B”, Carbohydr. Res. (1979) 70, 275–282CrossRefGoogle Scholar
  46. 46.
    Koch, K. F.; Rhoades, J. A. “Structure of Nebramycin Factor 6, a New Aminoglycosidic antibiotic”, Antimicrob. Agents. Chemother. (1970) 309–313Google Scholar
  47. 47.
    Takagi, Y.; Miyake, T.; Tsuchiya, T.; Umezawa, S., “Synthesis of 3-Deoxykanamycin B (Tobramycin)”, Bull. Chem. Soc. Japan (1976) 49, 3649–3651CrossRefGoogle Scholar
  48. 48.
    Tanabe, M.; Yasuda, D. M.; Detre, G., “Aminoglycoside antibiotics: synthesis of nebramine, tobramycin and 4-epi-tobramycin”, Tetrahedron Lett. (1977) 18, 3607–3610Google Scholar
  49. 49.
    Waksman, S. A.; Lechevalier, H. A., “Neomycin, a New Antibiotic Active against Streptomycin-Resistant Bacteria, including Tuberculosis Organisms”, Science (1949) 109, 305–307CrossRefGoogle Scholar
  50. 50.
    Rinehart, K. L.; Woo, P. W. K.; Argoudelis, A. D.; Giesbrecht, A. M., “Chemistry of the Neomycins. I. Partial Structure for Neobiosamines B and C”, J. Am. Chem. Soc. (1957) 79, 4567–4568CrossRefGoogle Scholar
  51. 51.
    Rinehart, K. L.; Chilton, W. S.; Hichens, M., “Chemistry of the Neomycins. XI.1 N.M.R. Assignment of the Glycosidic Linkages”, J. Am. Chem. Soc. (1962) 84, 3216–3218CrossRefGoogle Scholar
  52. 52.
    Reinehart, Jr., K. L.; Hitchens, M.; Argoudelis, A. D.; Chilton, W. S.; Carter, H. E.; Georgiadis, M. P.; Schaffner, C. P.; Schillings, R. T., “Chemistry of the Neomycins. X. Neomycins B and C”, J. Am. Chem. Soc. (1962) 84, 3218–3220CrossRefGoogle Scholar
  53. 53.
    Rinehart, Jr., K. L.; Chilton, W. S.; Hitchens, M.; von Philipsborn, M., “Chemistry of the Neomycins. XI.1 N.M.R. Assignment of the Glycosidic Linkages”, J. Am. Chem. Soc. (1962) 84, 3216–3218CrossRefGoogle Scholar
  54. 54.
    Umezawa, S.; Nishimura, Y., “Total synthesis of neomycin C”, J. Antibiot. (1977) 30, 189–191Google Scholar
  55. 55.
    Umezawa, S.; Harayama, A.; Nishimura, Y., “The total synthesis of neomycin C”, Bull. Soc. Chim. Japan (1980) 53, 3259–3262CrossRefGoogle Scholar
  56. 56.
    Usui, T.; Umezawa, S., “Total synthesis of neomycin B”, J. Antibiot. (1987) 40, 1464–1467Google Scholar
  57. 57.
    Usui, T.; Umezawa, S., “Total synthesis of neomycin B”, Carbohydr. Res. (1988) 174, 133–143CrossRefGoogle Scholar
  58. 58.
    Frohardt, R. P.; Haskell, T. H.; Ehrlich, J.; Knudsen, M. P., “Paromomycin”, U. S. Patent 2,916,485 (1959) to Parke DavisGoogle Scholar
  59. 59.
    Davisson, J. W.; Finlay, A. C., “Catenulin”, U.S. Patent 2,895,876 to PfizerGoogle Scholar
  60. 60.
    Canevazzi, G.; Scotti, T., “Description of a new species of streptomycetes (Streptomyces chrestomyceticus) producing a new antibiotic, amminosidin”, Giorn. Microbiol. (1959) 7, 242–250Google Scholar
  61. 61.
    Arcamone, F.; Bertazzoli, C.; Ghione, M.; Scotti, T., “Amminosidin, a New Oligosaccharide Antibiotic”, Giorn. Microbiol. (1959) 7, 251–253Google Scholar
  62. 62.
    Haskell, T. H.; French, J. C.; Bartz, Q. R., “Paromomycin. I. Paromamine, a Glycoside of D-glucosamine”, J. Am. Chem. Soc. (1959) 81, 3480–3481CrossRefGoogle Scholar
  63. 63.
    Haskell, T. H.; French, J. C.; Bartz, Q. R., “Paromomycin. II. Paromobiosamine, a Diaminohexosyl-D-ribose”, J. Am. Chem. Soc. (1959) 81, 3481Google Scholar
  64. 64.
    Haskell, T. H.; French, J. C.; Bartz, Q. R., “Paromomycin. III. The Structure of Paromobiosamine”, J. Am. Chem. Soc. (1959) 81, 3481–3482Google Scholar
  65. 65.
    Haskell, T. H.; French, J. C.; Bartz, Q. R., “Paromomycin. IV. Structural Studies”, J. Am. Chem. Soc. (1959) 81, 3482–3483CrossRefGoogle Scholar
  66. 66.
    Woo, P. W. K.; Dion, H. W.; Bartz, Q. R., “Butirosins A and B, aminoglycoside antibiotics. I. Structural units”, Tetrahedron Lett. (1971) 12, 2617–2620Google Scholar
  67. 67.
    67. Woo, P. W. K., “Butirosins A and B, aminoglycoside antibiotics. II. Mass spectrometric study”, Tetrahedron Lett. (1971) 12, 2621–2624Google Scholar
  68. 68.
    Woo, P. W. K.; Dion, H. W.; Bartz, Q. R., “Butirosins A and B, aminoglycoside antibiotics. III. Structures”, Tetrahedron Lett. (1971) 12, 2625–2628Google Scholar
  69. 69.
    Ikeda, D.; Tsuchiya, T.; Umezawa, S; Umezawa H., “Synthesis of butirosin B”, J. Antibiot. (1972) 25, 741–742Google Scholar
  70. 70.
    70. Akita, E.; Horiuchi, Y.; Yasuda, S. “Synthesis of butirosin B and related compounds by an acyl migration method”, J. Antibiot. (1973) 26, 365–367Google Scholar
  71. 71.
    Schatz, A.; Bugie, E.; Waksman, S. A., “Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria”, Proc. Exptl. Biol. Med. (1944) 55, 66–69Google Scholar
  72. 72.
    Kuehl, F. A., Jr.; Peck, R. L.; Hoffhine, C. E., Jr.; Peel, E. W.; Folkers, K., “Streptomyces Antibiotics. XIV. The Position of the Linkage of Streptobiosamine to Streptidine in Streptomycin”, J. Am. Chem. Soc. (1947) 69, 1234–1234CrossRefGoogle Scholar
  73. 73.
    Wolfrom, M. L.; Thompson, A., “Derivatives of N-Methyl-L-glucosaminic Acid; N-Methyl- l -mannosaminic Acid”, J. Am. Chem. Soc. (1947) 69, 1847–1849CrossRefGoogle Scholar
  74. 74.
    Dyer, J. R.; McGonigal, W. E.; Rice, K. C., “Streptomycin. II. Streptose”, J. Am. Chem. Soc.(1965) 87, 654–655CrossRefGoogle Scholar
  75. 75.
    Umezawa, S.; Takahashi, Y.; Usu, T.; Tsuchiya, T., “Total synthesis of streptomycin”, J. Antibiot. (1974) 27, 979–999Google Scholar
  76. 76.
    Kondo, S.; Sezaki, M.; Koike, M.; Shimura, M.; Akita, E.; Satoh, K.; Hara, T., “Destomycins A and B, Two New Antibiotics Produced by a Streptomyces”, J. Antibiot. (1965) 18A, 38–42Google Scholar
  77. 77.
    Kondo, S. I.; Akita, E.; Koike, M., “The structure of destomycin A” J. Antibiot. (1966) 19 (Ser. A), 139–140Google Scholar
  78. 78.
    Kondo, S.; Iinuma, K.; Naganawa, H.; Shimura, M.; Sekizawa, Y., “Structural studies on destomycins A and B”, J. Antibiot. (1975) 28, 79–82Google Scholar
  79. 79.
    Shimura, M.; Sekizawa, Y.; Iinuma, K.; Naganawa, H.; Kondo, S., “Structure of destomycin B”, Agr. Biol. Chem. (1976) 40, 611–618Google Scholar
  80. 80.
    Shimura, M.; Sekizawa, Y.; Iinuma, K.; Naganawa, H.; Kondo, S., “Destomycin C, a new member of destoycin family antibiotics”, J. Antibiot. (1975) 28, 83–84Google Scholar
  81. 81.
    Tamura, J.-I.; Horito, S.; Hashimoto, H.; Yoshimura, J., “The synthesis of destomycin C, a typical pseudo-trisaccharide of destomycin-group antibiotics”, Carbohydr. Res. (1988) 174, 181–199CrossRefGoogle Scholar
  82. 82.
    Mann, R. L.; Bromer, W. W., “The Isolation of a Second Antibiotic from Streptomyces hygroscopicus”, J. Am, Chem. Soc. (1958) 80, 2714–2716CrossRefGoogle Scholar
  83. 83.
    Neuss, N.; Koch, K. F.; Molloy, B. B.; Day, W.; Huckstep, L. L.; Dorman, D. E.; Roberts, J. D., “Structure of Hygromycin B, an Antibiotic from Streptomyces hygroscopicus; The Use of CMR Spectra in Structure Determination, I.”, Helv. Chim. Acta (1970) 53, 2314–2319CrossRefGoogle Scholar
  84. 84.
    Ninet, L.; Benazet, F.; Charpentie, Y.; Dubost, M.; Florent, J.; Lunel, J.; Mancy, D.; PreudHomme, J., “Flambamycin, a new antibiotic from Streptomyces hygroscopicus DS 23 230”, Experientia (1974) 30, 1270–1272CrossRefGoogle Scholar
  85. 85.
    Ollis, W. D.; Smith, C., “Acidic Hydrolysis of Flambamycin”, J. Chem. Soc. Chem. Commun. (1974) 881–882Google Scholar
  86. 86.
    Ollis, W. D.; Smith, C., “Methanolysis of Flambamycin. Formation and Constitutions of Flambalactone, Methyl Flambate, Flambatriose Isobutyrate and Flambatetrose Isobutyrate”, J./ Chem. Soc. Chem. Commun. (1974) 882–884Google Scholar
  87. 87.
    Ollis, W. D.; Smith, C., “Methasnolysis of Flambamycin. The Constitution of Eurekanate”. J. Chem. Soc. Chem. Commun. (1976) 347–348Google Scholar
  88. 88.
    Ollis, W. D.; Smith, C., “Hydrolysis of Flambamycin. The Constitutiion of Flambeurekanose”, J. Chem. Soc. Chem. Commun. (1976) 348–350Google Scholar
  89. 89.
    Ollis, W. D.; Smith, C.; Sutherland, I. O.; Wright, D. E., “The constitution of the anti biotic flambamycin”, J. Chem. Soc. Chem. Commun. (1976) 350–351 (incorrect structure)Google Scholar
  90. 90.
    Ollis, W. D.; Smith, C.; Wright, D. E., “The orthosomycin family of antibiotics—I: The constitution of flambamycin”, Tetrahedron (1979) 35, 105–127 (revised structure)CrossRefGoogle Scholar
  91. 91.
    Ollis, W. D.; Sutherland, I. O.; Brain, F.; Taylor, B.; Smith, C.; Wright, D. E., “The orthosomycin family of antibiotics-II: The 13 C NMR spectra of flambamycin and its derivatives”, Tetrahedron (1979) 35, 993–1001CrossRefGoogle Scholar
  92. 92.
    Ollis, W. D.; Jones, S.; Smith, C.; Wright, D. E., “The orthosomycin family of antibiotics—III: Mass spectral studies of flambamycin and its degradation products”, Tetrahedron (1979) 35, 1003–1014CrossRefGoogle Scholar
  93. 93.
    Zagar, C.; Scharf, H. D., “Synthesis of a terminal A-B-C disaccharide fragment of flambamycin, curamycin, and avilamycin”, Carbohydr. Res. (1993) 248, 107–118CrossRefGoogle Scholar
  94. 94.
    Ganguly, A. K.; Saksena, A. K., “Hydrolysis products of everninomicin B”, J. Chem. Soc. Chem. Commun. (1973) 531–532Google Scholar
  95. 95.
    Ganguly, A. K.; Saksena, A. K., “Structure of everninomicin B”, J. Antibiot. (1975) 28, 707–709Google Scholar
  96. 96.
    Ganguly, A. K.; Szmulewicz, S., “Structure of everninomicin C”, J. Antibiot. (1975) 28, 710–712Google Scholar
  97. 97.
    Ganguly, A. K.; Sarre, O.; Greeves, D.; Morton, J., “Structure of everninomicin D”, J. Am. Chem. Soc. (1075) 97, 1982–1985Google Scholar
  98. 98.
    Nicolaou, K. C.; Rodriguez, R. M.; Mitchell, H. J.; Van Delft, F. L., “Stereocontrolled synthesis of the everninomicin A1B(A)C ring framework”, Angew. Chem. Internat. Ed. (1998) 37, 1874–1876CrossRefGoogle Scholar
  99. 99.
    Mitchell, H. J., “The total synthesis of everninomycin 13,384–1”, Dissertation, (2000) University of California, San Diego, USA. From: Diss. Abstr. Int., B 2000, 61(3), 1417Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations