Advertisement

Carbohydrates pp 423-467 | Cite as

Synthesis of Polychiral Natural Products from Carbohydrates

  • Momcilo Miljković
Chapter

Abstract

Stereoselective synthesis of polychiral natural products is the most challenging problem for a synthetic organic chemist. The stereoselective synthesis of macrolide antibiotics represents one such difficult problem. They consist of macrocyclic lactone rings with many hydroxylated and methylated chiral carbons. In addition to that the macrocyclic lactones (macrolides) are usually glycosylated with amino sugars.

Keywords

Methyl Ketone Stereoselective Synthesis Anomeric Configuration Pyridinium Chlorochromate Phenyl Sulfone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Inch, T. D., “Formation of convenient chiral intermediates from carbohydrates and their use in synthesis”, Tetrahedron (1984) 40, 3161–3213CrossRefGoogle Scholar
  2. 2.
    Nakata, M., “Formation of Complex Natural Compounds from Monosaccharides”, in Glycoscience, Chemistry and Chemical Biology, Fraser-Reid, B.; Tat suta, K.; Thiem, J., Eds, Vol. II, Springer Verlag, New York, 2001, pp. 1175–1213Google Scholar
  3. 3.
    Woodward, R. B., “Struktur und Biogenese der Makrolide”, Angew. Chem. (1957) 69, 50–58CrossRefGoogle Scholar
  4. 4.
    Miljkovic, M.; Gligorijevic, M.; Satoh, T.; Miljkovic, D., “Synthesis of macrolide antibiotics. I. Stereospecific addition of methyllithium and methylmagnesium iodide to methyl α -D-xylo-hexopyranosid-4-ulose derivatives. Determination of the configuration at the branching carbon atom by carbon-13 nuclear magnetic resonance spectroscopy”, J. Org. Chem. (1973) 39,1379–1384CrossRefGoogle Scholar
  5. 5.
    Miljkovic, M.; Gligorijevic, M.; Satoh, T.; Glisin, Dj.; Pitcher, R. G., “Carbon-13 nuclear magnetic resonance spectra of branched-chain sugars. Configurational assignment of the branching carbon atom of methyl branched-chain sugars”, J. Org. Chem. (1974) 39, 3847–3850CrossRefGoogle Scholar
  6. 6.
    Miljkovic, M.; Glisin, Dj., “Synthesis of macrolide antibiotics. II. Stereoselective synthesis of methyl 4,6-O-benzylidene-2-deoxy-2-C,3-O-dimethyl- α -D-glucopyranoside. Hydrogenation of the C-2 methylene group of methyl 4,6-O-benzylidene-2-deoxy-2-C-methylene-3-O-methyl- α -and - β -D-arabinohexopyranoside”, J. Org. Chem. (1975) 40, 3357–3359CrossRefGoogle Scholar
  7. 7.
    Miljkovic, M.; Glisin, Dj., “Synthesis of macrolide antibiotics. III. Stereoselective synthesis of methyl-2,6-dideoxy-2-C,3-O,4-C,6-C-tetramethyl- α -D-glucopyranoside representing the 11-O-methyl derivative of the C-9-C-15-segment of erythronolide A”, Bull Soc. Chim. Beograd (1977) 42, 659–661Google Scholar
  8. 8.
    Miljkovic, M.; Choong, T. C.; Glisin, Dj., “Synthesis of macrolide antibiotics. IV. Stereoselective syntheses of the 3-O-methyl and the 11-O-methyl derivatives of the C(1)-C(6) segment of erythronolides A and B and the C(9)-C(15) segment of erythronolide A, respectively”, Croat. Chim. Acta (1985) 58, 681–698Google Scholar
  9. 9.
    Dalling, D. K.; Grant, D. M., “Carbon-13 magnetic resonance. IX. Methylcyclohexanes”, J. Am. Chem. Soc. (1967) 89, 6612–6622CrossRefGoogle Scholar
  10. 10.
    Anet, F. A. L.; Bradley, C. H.; Buchanan, G. W., “Direct detection of the axial con former of methylcyclohexane by 63.1 MHz carbon-13 nuclear magnetic resonance at low temperatures”, J. Am. Chem. Soc. (1971) 93, 258–259CrossRefGoogle Scholar
  11. 11.
    Stothers, J. B., Carbon-13 NMR Spectroscopy, Academic Press, New York, NY, 1972, pp. 404, 426Google Scholar
  12. 12.
    Inch, T. D., “The Use of Carbohydrates in the Synthesis and Configurational Assignments of Optically Active, Non-Carbohydrate Compounds”, Advan. Carbohydr. Chem. Biochem. (1972) 27, 191–225CrossRefGoogle Scholar
  13. 13.
    Burton, J. S.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part III. The introduction of branching into methyl 3,4-O-isopropylidene- β -L-arabinoside and the synthesis of L-hamamelose”, J. Chem. Soc. (1965) 3433–3445Google Scholar
  14. 14.
    Feast, A. A. J.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part VI. The reaction of methyl 3,4-O-isopropylidene- β -L-erythro-pentopyranosidulose with organolithium reagents”, J. Chem. Soc. C (1966) 303–306Google Scholar
  15. 15.
    Flaherty, B.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part VII. The synthesis of D-mycarose and D-cladinose”, J. Chem. Soc. C (1966) 398–403Google Scholar
  16. 16.
    Inch, T. D.; Lewis, G. J.; Williams, N. E., “A stereochemical comparison of some ad dition reactions to methyl 4,6-O-benzylidene-3-deoxy-3-C-ethyl-α-D-hexopyranosid-2-uloses”, Carbohydr. Res. (1971) 19, 17–27CrossRefGoogle Scholar
  17. 17.
    Inch, T. D., “Asymmetric synthesis: Part I. A stereoselective synthesis of benzylic centres. Derivatives of 5-C-phenyl-D-gluco-pentose and 5-C-phenyl-L-ido-pentose” Carbohydr. Res. (1967) 5, 45–52CrossRefGoogle Scholar
  18. 18.
    Guillerm-dron, D.; Capmau, M.-L.; Chodkiewicz, W., “Assistance du groupe m- thoxyle en α d'un carbonyle dans le cours stérique de l'addition d'organométalliques insaturés”, Tetrahedron Lett. (1972) 13, 37–40Google Scholar
  19. 19.
    Miljkovic, M.; Gligorijevic, M.; Miljkovic, D., “Steric and Electrostatic Interactions in Reactions of Carbohydrates. II. Stereochemistry of Addition Reactions to the Carbonyl Group of Glycopyranosiduloses. Synthesis of Methyl 4, 6-O-Benzylidene-3-O- methyl- β -D-mannopyranoside”, J. Org. Chem. (1974) 39, 2118–2120CrossRefGoogle Scholar
  20. 20.
    Hanessian, S.; Rancourt, G., “Carbohydrates as chiral intermediates in organic synthesis. Two functionalized chemical precursors comprising eight of the ten chiral centers of erythronolide A”, Can. J. Chem. (1976) 55, 1111–1113CrossRefGoogle Scholar
  21. 21.
    Hanessian, S.; Rancourt, G., “Approaches to the total synthesis of natural products from carbohydrates”, Pure Appl. Chem. (1977) 49, 1201–1214CrossRefGoogle Scholar
  22. 22.
    Hanessian, S.; Rancourt, G.; Guindon, Y., “Assembly of the carbon skeletal frame work of erythronolide A”, Can. J. Chem. (1978) 56, 1843–1846CrossRefGoogle Scholar
  23. 23.
    Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Zelinsky, N. D., “Synthesis of macrolide antibiotics. 1. Synthesis of the C1–C6 segment of 14-membered macrolide antibiotics”, Tetrahedron Lett. (1981) 22, 4315–4318CrossRefGoogle Scholar
  24. 24.
    Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Zelinsky, N. D., “Synthesis of macrolide antibiotics. 2. Synthesis of the C9–C13 segments of erythronolides A, B and oleandonolide”, Tetrahedron Lett. (1981) 22, 4319–4322CrossRefGoogle Scholar
  25. 25.
    Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Yashunskii, D. V., “Synthesis of macrolide antibiotics. 3. Revised synthesis of C9–C13 segment of erythronolide A”, Tetrahedron Lett. (1984) 25, 1605–1608CrossRefGoogle Scholar
  26. 26.
    Kochetkov, N. K.; Sviridov, A. F.; Ermolenko, M. S.; Yashunskii, D. V.; Borodkin, V. S., “Stereocontrolled synthesis of erythronolides A and B from 1,6-anhydro- β -D- glucopyranose (levoglucosan). Skeleton assembly in (C9–C13) + (C7–C8) + (C1–C6) sequence”, Tetrahedron (1989) 45(16), 5109–5136CrossRefGoogle Scholar
  27. 27.
    Sviridov, A. F.; Yashunskii, D. V.; Ermolenko, M. S.; Kochetkov, N. K., “New method for the synthesis of 2,4-dideoxy-2,4-di-C-methyl-D-glucopyranose derivatives”, Izv. Akad. Nauk. SSSR, Ser. Khim. (1984) 723–725Google Scholar
  28. 28.
    Kochetkov, N. K.; Sviridov, A. F.; Yashunskii, D. V.; Ermolenko, M. S.; Borodkin, V. S., “Synthesis of C-methyldeoxysugars: deoxygenation of xanthates of tertiary alcohols and hydrozirconation of exomethylene derivatives of carbohydrates”, Izv. Akad. Nauk SSSR, Ser. Khim. (1986) 441–445Google Scholar
  29. 29.
    Omura, K.; Swern, D., “Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study”, Tetrahedron (1978) 34, 1651–1660CrossRefGoogle Scholar
  30. 30.
    Kelly, A. G.; Roberts, J. S., “A simple, stereocontrolled synthesis of a thromboxane B2 synthon”, J. Chem. Soc. Chem. Commun. (1980) 228–229Google Scholar
  31. 31.
    Cha, J. K.; Christ, W. J.; Kishi, Y., “On stereochemistry of osmium tetraoxide oxidation of allylic alcohol systems. Empirical rule”, Tetrahedron (1984) 40, 2247–2255CrossRefGoogle Scholar
  32. 32.
    Ashby, E. C.; Lin, J. J., “Selective reduction of alkenes and alkynes by the reagent lithium aluminum hydride-transition-metal halide”, J. Org. Chem. (1978) 43, 2567– 2572CrossRefGoogle Scholar
  33. 33.
    Gigg, R.; Warren, C. D., “The allyl ether as a protecting group in carbohydrate chemistry. Part II”, J. Chem. Soc. C (1968) 1903–1911Google Scholar
  34. 34.
    Oikawa, Y.; Yoshioka, T.; Yonemitsu, O., “Protection of hydroxy groups by intramolecular oxidative formation of methoxybenzylidene acetals with DDQ”, Tetrahedron Lett. (1982) 23, 889–892CrossRefGoogle Scholar
  35. 35.
    Seebach, D.; Ertasogon, M.; Locher, R.; Schweizer, W. B., “Tritylketone und Tritylenone. Beiträge zur sterisch erzwungenen Michael-Addition und zur diastereoselektiven Aldol-Addition”, Helv. Chim. Acta (1985) 68, 264–282CrossRefGoogle Scholar
  36. 36.
    Nakagawa, I.; Hata, T., “A convenient method for the synthesis of 5'-S-alkylthio-5'- deoxyribonucleosides”, Tetrahedron Lett. (1975) 16, 1409–1412Google Scholar
  37. 37.
    Andersen, K. K.; Gaffield, W.; Papanikolaou, N. E.; Foley, J. W.; Perkins, P. I., “Optically Active Sulfoxides. The Synthesis and Rotatory Dispersion of Some Diaryl Sulfoxides”, J. Am. Chem. Soc. (1964) 86, 5637–5646CrossRefGoogle Scholar
  38. 38.
    Drabowicz, J.; Oae, S., “Mild Reductions of Sulfoxides with Trifluoroacetic Anhydride/Sodium Iodide System”, Synthesis (1977) 404–404Google Scholar
  39. 39.
    Corey, E. J.; Shibasaki, M.; Knolle, J., “Simple, stereocontrolled synthesis of thromboxane B2 from D-glucose”, Tetrahedron Lett. (1977) 19, 1625–1626CrossRefGoogle Scholar
  40. 40.
    Hanessian, S.; Lavallee, P., “A stereospecific, total synthesis of thromboxane B2”, Can. J. Chem. (1977) 55, 562–565CrossRefGoogle Scholar
  41. 41.
    Hanessian, S.; Lavallee, P., “Total synthesis of (+)-thromboxane B2 from D-glucose. A detailed account”, Can. J. Chem. (1981) 59, 870–877CrossRefGoogle Scholar
  42. 42.
    Wick, A. E.; Felix, D.; Steen, K.; Eschenmoser, A., “CLAISEN'sche Umlagerungen bei Allyl- und Benzylalkoholen mit Hilfe von Acetalen des N, N-Dimethylacetamids. Vorläufige Mitteilung”, Helv. Chim. Acta (1964) 47, 2425–2429CrossRefGoogle Scholar
  43. 43.
    Felix, D.; Gschwend-Steen, K.; Wick, A. E.; Eschenmoser, A., ”CLAISEN'sche Umlagerungen bei Allyl- und Benzylalkoholen mit 1-Dimethylamino-1-methoxyäthen“, Hel. Chim. Acta (1969) 52, 1030–1042CrossRefGoogle Scholar
  44. 44.
    Corey, E. J.; Schaaf, T. K.; Huber, W.; Koelliker, U.; Weinschenker, N. M., ”Total Synthesis of Prostaglandins F2α and E2 as the Naturally Occurring Forms“, J. Am. Chem. Soc. (1970) 92, 397–398CrossRefGoogle Scholar
  45. 45.
    Colegate, S. M.; Dorling, P. R.; Huxtable, C. R., ”A Spectroscopic Investigation of Swainsonine: An α-Mannosidase Inhibitor Isolated from Swainsona canescens“, Aust. J. Chem. (1979) 32, 2257–2264CrossRefGoogle Scholar
  46. 46.
    Molyneux, R. J.; James, L. F., ”Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus)“, Science (1982) 216, 190–191CrossRefGoogle Scholar
  47. 47.
    Schneider, M. J.; Ungemach, F. S.; Broquist, H. P.; Harris, T. M., ”(1S,2R,8R,8aR)- 1,2,8-trihydroxyoctahydroindolizine (swainsonine), an α-mannosidase inhibitor from Rhizoctonia leguminicola“, Tetrahedron (1983) 39, 29–32CrossRefGoogle Scholar
  48. 48.
    Hohenschutz, L. D.; Bell, E. A.; Jewess, P. J.; Leworthy, D. P.; Pryce, R. J.; Arnold, E.; Clardy, J.,“Castanospermine, A 1,6,7,8-tetrahydroxyoctahydroindolizine alkaloid, from seeds of Castanospermum australe”, Phytochemistry (1981) 20, 811–814CrossRefGoogle Scholar
  49. 49.
    Freer, A. A.; Gardner, D.; Greatbanks, D.; Poyser, J. P.; Sim, G. A., “Structure of cyclizidine (antibiotic M146791): x-ray crystal structure of an indolizidinediol metabolite bearing a unique cyclopropyl side chain”, J. Chem. Soc. Chem. Commun. (1982) 1160–1162Google Scholar
  50. 50.
    50, Ali, M. H.; Hough, L.; Richardson, A. C., “A chiral synthesis of swainsonine from D-glucose”, J. Chem. Soc. Chem. Commun. (1984) 447–448Google Scholar
  51. 51.
    Richardson, A. C., “Improved preparation of methyl 3-amino-3-deoxy- α -D-mannopyranoside hydrochloride”, J. Chem. Soc. (1962) 373–374Google Scholar
  52. 52.
    Fleet, G. W. J.; Gough, M. J.; Smith, P. W., “Enantiospecific Synthesis of Swain sonine, (1S, 2R, 8R, 8aR)-1,2,8-trihydroxyoctahydroindolizine, from D-mannose”, Tetrahedron Lett. (1984) 25, 1853–1856CrossRefGoogle Scholar
  53. 53.
    Ohrui, H.; Emoto, S., “Stereospecific synthesis of (+)-biotin”, Tetrahedron Lett. (1975) 16, 2765–2766Google Scholar
  54. 54.
    Ogawa, T.; Kawano, T.; Matsui, M., “A biomimetic synthesis of (+)-biotin from D-glucose”, Carbohydr. Res. (1977) 57, C31-C35CrossRefGoogle Scholar
  55. 55.
    Corey, E. J.; Nicolaou, K. C.; Balanson, R. D.; Machida, Y., “A Useful Method for the Conversion of Azides to Amines”, Synthesis (1975) 590–591Google Scholar
  56. 56.
    Buchta, E.; Andree, F., “Eine Partialsynthese des ”all“-trans-Methyl-bixins und des ”all“-trans-4.4'-Desdimethyl-methyl-bixins”, Chem. Berichte (1959) 92, 3111–3116CrossRefGoogle Scholar
  57. 57.
    Alexander, R. G.; Clayton, J. P.; Luk, K.; Rogers, N. H.; King, T. J., “The chemistry of pseudomonic acid. Part 1. The absolute configuration of pseudomonic acid A”, J. Chem. Soc. Perkin Trans. I (1978) 561–565CrossRefGoogle Scholar
  58. 58.
    Chain, E. B.; Mellows, G., “Pseudomonic acid. Part 3. Structure of pseudomonic acid B”, J. Chem. Soc. Perkin Trans. I (1977) 318–322CrossRefGoogle Scholar
  59. 59.
    Clayton, J. P.; O’Hanlon, P. J.; Rogers, N. H., “The structure and configuration of pseudomonic acid C”, Tetrahedron Lett. (1980) 21, 881–884CrossRefGoogle Scholar
  60. 60.
    Beau, J.-M.; Abyraki, S.; Pougny, J.-R.; Sinaÿ, P., “Total synthesis of methyl (+)-pseudomonate C from carbohydrates”, J. Am. Chem. Soc. (1983) 105, 621–622CrossRefGoogle Scholar
  61. 61.
    Helferich, B.; Ost, W., “Synthese einiger  -D-Xylopyranoside”, Chem. Berichte (1962) 95, 2612–2615CrossRefGoogle Scholar
  62. 62.
    Pougny, J.-R.; Sinaÿ, P. “(3S,4S)-4-Methylheptan-3-ol, a pheromone component of the smaller European elm bark beetle. Synthesis from D-glucose”, J. Chem. Res. Synop Ses. (1982) 1 1Google Scholar
  63. 63.
    Bernet, B.; Vasella, A., “Carbocyclische Verbindungen aus Monosacchariden. I. Um setzungen in der Glucosereihe”, Helv. Chim. Acta (1979) 62, 1990–2016CrossRefGoogle Scholar
  64. 64.
    Nakane, M.; Hutchinson, C. R.; Gollman, H., “A convenient and general synthesis of 5-vinylhexofuranosides from 6-halo-6-deoxypyranosides”, Tetrahedron. Lett. ((1980) 21, 1213–1216CrossRefGoogle Scholar
  65. 65.
    Huynh, C.; Derguini-Boumechal, F.; Linstrumelle, G.,“ Copper-catalysed reactions of Grignard reagents with epoxides and oxetane”, Tetrahedron Lett. ((1979) 20,1503–1506CrossRefGoogle Scholar
  66. 66.
    Felkin, H.; Frajerman, C.; Roussi, G., “Stereochemistry of epoxide ring opening by allylic Grignard reagents”, Bull. Soc. Chim. Fr. (1970) 3704–3710Google Scholar
  67. 67.
    Glaze, W. H.; Duncan, D. P.; Berry, D. J., “Neopentylallyllithium. 5. Stereochemistry of nonrearrangement reactions with epoxides”, J. Org. Chem. (1977) 42, 694–697CrossRefGoogle Scholar
  68. 68.
    Linstrumelle, G.; Lorne, R.; Dang, H. P., “Copper-catalysed reactions of allylic Grignard reagents with epoxides”, Tetrahedron Lett. (1978) 19, 4069–4072Google Scholar
  69. 69.
    Schlosser, M.; Stähle, M., “Allylic Compounds of Magnesium, Lithium, and Potassium: σ - or π -Structures?”, Angew. Chem., Int. Ed. Engl. (1980) 19, 487–489CrossRefGoogle Scholar
  70. 70.
    Bagnell, L.; Jeffery, E. A.; Meisters, A.; Mole, T., “A new conversion of nitriles into acetyl compounds: Nickel-catalysed methylation by trimethylaluminium”, Aust. J. Chem. (1974) 27, 2577–2582Google Scholar
  71. 71.
    Kozikowski, A. P.; Schmiesing, R. J.; Sorgi, K. L., “Total synthesis of pseudomonic acid C: application of the alkoxyselenation reaction in organic synthesis”, J. Am. Chem. Soc. (1980) 102, 6577–6580CrossRefGoogle Scholar
  72. 72.
    Clayton, J. P.; Luk, K.; Rogers, N. H., “The chemistry of pseudomonic acid. Part 2. The conversion of pseudomonic acid A into monic acid A and its esters”, J. Chem. Soc. Perkin Trans. I (1979) 308–313CrossRefGoogle Scholar
  73. 73.
    Keck, G. E.; Kachensky, D. F.; Enholm, E. J., “Pseudomonic acid C from L-lyxose”, J. Org. Chem. (1985) 50, 4317–4325CrossRefGoogle Scholar
  74. 74.
    Keck, G. E.; Yates, J. B., “Carbon-carbon bond formation via the reaction of trialkylallylstannanes with organic halides”, J. Am. Chem. Soc. (1982) 104, 5829–5831CrossRefGoogle Scholar
  75. 75.
    Schaffer, R., “2,3-O-Isopropylidene- α -D-lyxofuranose, the monoacetone-D-lyxose of Levene and Tipson”, J. Res. Natl. Bur. Std. (1961) 65A, 507–512Google Scholar
  76. 76.
    Fráter, G., “Über die Stereospezifität der alpha-Alkylierung von-Hydroxycarbon säureestern. Vorläufige Mitteilung”, Helv. Chim. Acta (1979) 62, 2825–2828CrossRefGoogle Scholar
  77. 77.
    Fráter, G., “Stereospezifische Synthese von (+)-(3R, 4R)-4-Methyl-3-heptanol, das Enantiomere eines Pheromons des kleinen Ulmensplintkäfers (Scolytus multistria tus)”, Helv. Chim. Acta (1979) 62, 2829–2832CrossRefGoogle Scholar
  78. 78.
    Ohrui, H.; Jones, G. H.; Moffatt, J. G.; Maddox, M. L.; Christensen, A. T.; Byram, S. K., “C-Glycosyl nucleosides. V. Unexpected observations on the relative stabilities of compounds containing fused five-membered rings with epimerizable substituents”, J. Am. Chem. Soc. (1974) 97, 4602–4613CrossRefGoogle Scholar
  79. 79.
    Horner, L.; Hoffman, H.; Wippel, H. G., “Phosphororganische Verbindungen, XII. Phosphinoxyde als Olefinierungsreagenzien”, Chem. Berichte (1958) 91 , 61–63CrossRefGoogle Scholar
  80. 80.
    Horner, L.; Hoffman, H.; Wippel, H. G.; Klahre, G., “Phosphororganische Verbindungen, XX. Phosphinoxyde als Olefinierungsreagenzien”, Chem. Berichte (1959) 92, 2499–2505CrossRefGoogle Scholar
  81. 81.
    Wadsworth, W. S., Jr.; Emmons, W. D., “The Utility of Phosphonate Carbanions in Olefin Synthesis”, J. Am. Chem. Soc. (1961) 83, 1733–1738CrossRefGoogle Scholar
  82. 82.
    Wadsworth, W. S., Jr.; Emmons, W. D., Organic Synthesis, Coll. Vol. 5 (1973) 547; ibid. (1965) Vol. 45, 44Google Scholar
  83. 83.
    Wadsworth, W. S., Jr., Organic reactions (1977) 25, 73–253Google Scholar
  84. 84.
    Keck, G. E.; Tafesh, A. M., “Free-radical addition-fragmentation reactions in synthesis: a ”second generation“ synthesis of (+)-pseudomonic acid C”, J. Org. Chem. (1989) 54, 5845–5846CrossRefGoogle Scholar
  85. 85.
    Takacs, J. M.; Helle, M. A.; Seely, F. L., “An improved procedure for the two carbon homologation of esters to α, β-unsaturated esters”, Tetrahedron Lett. (1986) 27, 1257–1260CrossRefGoogle Scholar
  86. 86.
    Evans, D. A.; Andrews, G. L., “Allylic sulfoxides. Useful intermediates in organic synthesis”, Acc. Chem. Res. (1974) 7, 147–155CrossRefGoogle Scholar
  87. 87.
    Trost, B. M.; Curran, D. P., “Chemoselective oxidation of sulfides to sulfones with potassium hydrogen persulfate”, Tetrahedron Lett. (1981) 22, 1287–1290CrossRefGoogle Scholar
  88. 88.
    Okazaki, T.; Kitahara, T.; Okami, Y., “Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud”, J. Antibiot. (1975) 28, 176–184Google Scholar
  89. 89.
    Dunitz, J. D.; Hawley, D. M.; Mikloš, D.; White, D. N. J.; Berlin, Y.; Marušič, R.; Prelog, V., “Structure of boromycin”, Helv. Chim. Acta (1971) 54, 1709–1713CrossRefGoogle Scholar
  90. 90.
    Corey, E. J.; Pan, B. C.; Hua, D. H.; Deardorf, D. R., “Total synthesis of aplas momycin. Stereocontrolled construction of the C(3)-C(17) fragment”, J. Am. Chem. Soc. (1982) 104, 6816–6818CrossRefGoogle Scholar
  91. 91.
    Corey, E. J.; Hua, D. H.; Pan, B. C.; Seitz, S. P., “Total synthesis of aplasmomycin”, J. Am. Chem. Soc. (1982) 104, 6818–6820CrossRefGoogle Scholar
  92. 92.
    Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H., “Studies with trialkylsilyltriflates: new syntheses and applications”, Tetrahedron Lett. (1981) 22, 3455–3458CrossRefGoogle Scholar
  93. 93.
    Corey, E. J.; Bock, M. G., “Protection of primary hydroxyl groups as methylthio-methyl ether”, Tetrahedron Lett. (1975) 16, 3269–3270Google Scholar
  94. 94.
    Diago-Mesequer, J.; Palomo-Coll, A. L.; Fernández-Lizarbe, J. R.; Zugaza-Bilbao, A., “A New Reagent for Activating Carboxyl Groups; Preparation and Reactions of N,N-Bis[2-oxo-3-ox-azolidinyl]phosphorodiamidic Chloride”, Synthesis (1980) 547–550Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations