Advertisement

Carbohydrates pp 323-421 | Cite as

Chemistry of the Glycosidic Bond

  • Momčilo Miljković
Chapter

Abstract

Because of the importance and the role the carbohydrates play in living organisms, the formation and hydrolysis of glycosidic bond are probably the two most important reactions in carbohydrate chemistry. Just as the amino acids are the building blocks for the synthesis of peptides and proteins in living organisms, the monosaccharides are the building blocks for the synthesis of oligosaccharides, polysaccharides, and glycoconjugates (glycoproteins, glycosaminoglycans, glycolipids, and proteoglycans to name a few). The synthesis of oligo- and polysaccharides as well as glycoconjugates requires the formation of glycosidic bonds, i.e., the formation of a chemical bond between the C1 carbon of a monosaccharide and any hydroxyl oxygen of another monosaccharide or a hydroxyl oxygen of any molecule that bears hydroxyl group, such as a hydroxyamino acid (serine, threonine), a lipid (sphingosine), and phosphatidyl inositol. The glycosidic bond can also be formed between the anomeric C1 carbon of a monosaccharide and the amido nitrogen of asparagine (as, for example, in N-linked glycoproteins) or the nitrogen of a purine or a pyrimidine base (as, for example, in ribo- and deoxyribonucleosides).

Keywords

Glycosidic Bond Glycosyl Donor Ring Oxygen Glycosyl Acceptor Glycosidic Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Michael, A., Am. Chem. J. (1879) 1, 305CrossRefGoogle Scholar
  2. 2.
    Michael, A., Am. Chem. J. (1885) 6, 336Google Scholar
  3. 3.
    Michael, A., Compt. Rend. (1879) 89, 355Google Scholar
  4. 4.
    Fischer, E., “Ueber die Glucoside der Alkohole”, Berichte (1893) 26, 2400–2412Google Scholar
  5. 5.
    Fischer, E., “Ueber die Verbindungen der Zucker mit den Alkoholen und Ketonen”, Ber. (1895) 28, 1145–1167Google Scholar
  6. 6.
    Bishop, C. T.; Cooper, F. P., “Glycosidation of Sugars: I. Formation of Methyl-D-Xylosides”, Can. J. Chem. (1962) 40, 224–232CrossRefGoogle Scholar
  7. 7.
    Bishop, C. T.; Cooper, F. P., “Glycosidation of Sugars: II. Methanolysis of D-Xylose, D-Arabinose, D-Lyxose, and D-Ribose”, Can. J. Chem. (1963) 41, 2743–2758CrossRefGoogle Scholar
  8. 8.
    Hough, L.; Richardson, A. C., in Rodd's “Chemistry of Carbon Compounds”, Coffey, S. (Ed.) 2nd Ed, Vol. I, Part F, Elsevier Publishing Co., Amsterdam-London- New York, 1967, p. 328Google Scholar
  9. 9.
    Heard, D. D.; Barker, R., “Investigation of the role of dimethyl acetals in the formation of methyl glycosides”, J. Org. Chem. (1968) 33, 740–746CrossRefGoogle Scholar
  10. 10.
    Ferrier, R.J.; Hatton, L. R., “Studies with radioactive sugars: Part I. Aspects of the alcoholysis of D-xylose and D-glucose; the role of the acyclic acetals”, Carbohydr. Res. (1968) 6, 75–86CrossRefGoogle Scholar
  11. 11.
    Smirnyagin, V.; Bishop, C. T., “Glycosidation of sugars. IV. Methanolysis of D- glucose, D-galactose, and D-mannose”, Can. J. Chem. (1968) 46, 3085–3090CrossRefGoogle Scholar
  12. 12.
    Fletcher, H., Jr., in Whistler, R. L.; Wolfrom, M. L. (Eds.), Methods in Carbohydr. Chem. Vol. 2, Academic Press, New York and London, 1963, p. 228Google Scholar
  13. 13.
    McCormick, J. E., “Benzyl β-L-arabinopyranoside”, Carbohydr. Res. (1967) 4, 262–263CrossRefGoogle Scholar
  14. 14.
    Königs, W.; Knorr, E., “Ueber einige Derivate des Traubenzuckers und der Galactose”, Berichte (1901) 34, 957–981Google Scholar
  15. 15.
    Jeanloz, R.; Fletcher, H. G., Jr.; Hudson, C. S., “Some Reactions of 2,3,4-Tribenzoyl- β-D-ribopyranosyl Bromide”, J. Am. Chem. Soc. (1948) 70, 4055–4057CrossRefGoogle Scholar
  16. 16.
    Ness, R. K.; Fletcher, H. G.; Hudson, C. S., “The Reaction of 2,3,4,6-Tetrabenzoyl-α- D-glucopyranosyl Bromide and 2,3,4,6-Tetrabenzoyl-α-D-mannopyranosyl Bromide with Methanol. Certain Benzoylated Derivatives of D-Glucose and D-Mannose”, J. Am. Chem. Soc. (1950) 72, 2200–2205CrossRefGoogle Scholar
  17. 17.
    Bochkov, A. F.; Zaikov, G. E., “Chemistry of the O-Glycosidic Bond (Formation and Cleavage)”, Pergamon Press, Oxford-New York, 1979, pp. 16–19Google Scholar
  18. 18.
    Mattlock, G. L.; Phillips, G. O., “The reactivity of O-acylglycosyl halides. Part VI. Steric effects of neighbouring groups”, J. Chem. Soc. (1958) 130–135Google Scholar
  19. 19.
    Feather, M. S.; Harris, J. F., “The Acid-Catalyzed Hydrolysis of Glycopyranosides”, J. Org. Chem. (1965) 30, 153–157CrossRefGoogle Scholar
  20. 20.
    Hickinbottom, W. J., “Glucosides. Part I. The formation of glucosides from 3: 4: 6-triacetyl glucose 1: 2-anhydride”, J. Chem. Soc. (1928) 3140–3147Google Scholar
  21. 21.
    Haynes, L. J.; Newth, F. H., “The Glycosyl Halides and Their Derivatives”, Advan. Carbohydr. Chem. (1955) 10, 207–256CrossRefGoogle Scholar
  22. 22.
    Lemieux, R. U.; Brice, C.; Huber, G., “The Effect of Chlorine Substitutions at the C-2 Acetoxy Group on Some Properties of the Glucose Pentaacetates”, Canad. J. Chem. (1955) 33, 134–147CrossRefGoogle Scholar
  23. 23.
    Lemieux, R. U.; Morgan, A. R., “The Preparation and Configurations of Tri-O- Acetyl-α-D-Glucopyranose 1, 2-(Ortho-Esters)”, Can. J. Chem.(1965) 43, 2198–2204CrossRefGoogle Scholar
  24. 24.
    Reynolds, D. D.; Evans, W. L., “The Preparation of α- and β-Gentiobiose Octaacetates”, J. Am. Chem. Soc. (1938) 60, 2559–2561CrossRefGoogle Scholar
  25. 25.
    Helferich, B.; Bohn, E.; Winkler, S., “Ungesättigte Derivate von Gentiobiose und Cellobiose”, Ber. (1930) 63, 989–998Google Scholar
  26. 26.
    Wulff, G.; Röhle, G., “Results and Problems of O-Glycoside Synthesis”, Angew. Chem. Int. Ed. Engl. (1974) 13, 157–170CrossRefGoogle Scholar
  27. 27.
    Wulff, G.; Röhle, G.: Krüger, W., “Untersuchungen zur Glykosidsynthese, IV. Neuar tige Silbersalze in der Glykosidsynthese”, Chem. Berichte (1972) 105, 1097–1110CrossRefGoogle Scholar
  28. 28.
    Wulff, G.; Röhle, G.; Schmidt, U., “Untersuchungen zur Glykosidsynthese, V. Reaktionsprodukte und Stereospezifität der Glucosylierung in Gegenwart unlöslicher Silbersalze in Diäthyläther”, Chem. Berichte (1972) 105, 1111–1121CrossRefGoogle Scholar
  29. 29.
    Wulff, G.; Röhle, G., “Untersuchungen zur Glykosidsynthese, VI. Kinetische Unter- suchungen zum Mechanismus der Koenigs-Knorr-Reaktion”, Chem. Berichte (1972) 105, 1122–1132CrossRefGoogle Scholar
  30. 30.
    Kronzer, F. J.; Schuerch, C., “The methanolysis of some derivatives of 2,3,4-tri-O-benzyl-α-image-glucopyranosyl bromide in the presence and absence of silver salts”, Carbohydr. Res. (1973) 27, 379–390CrossRefGoogle Scholar
  31. 31.
    Eby, R.; Schuerch, C., The use of 1-O-tosyl-D-glucopyranose derivatives in α-D-glucoside synthesis”, Carbohydr. Res. (1974) 34, 79–90CrossRefGoogle Scholar
  32. 32.
    Lucas, T. J.; Schuerch, C., “Methanolysis as a model reaction for oligosaccharide synthesis of some 6-substituted 2,3,4-tri-O-benzyl-D-galactopyranosyl derivatives”, Carbohydr. Res. (1975) 39, 39–45CrossRefGoogle Scholar
  33. 33.
    Hanessian, S.; Banoub, J., Synthetic Methods for Carbohydrates, Am. Chem. Soc. Symposium Ser. No. 39, (1976) 36Google Scholar
  34. 34.
    Hanessian, S.; Banoub, J., “Chemistry of the glycosidic linkage. An efficient synthesis of 1,2-trans-di-saccharides”, Carbohydr. Res. (1977) 53, C13–C16CrossRefGoogle Scholar
  35. 35.
    Helferich, B.; Wedemeyer, K.-F., “Zur Darstellung von Glucosiden aus Acetobrom- glucose”, Ann. (1949) 563, 139–145Google Scholar
  36. 36.
    Schroeder, L. R.; Green, J. W., “Koenigs–Knorr syntheses with mercuric salt”, J. Chem. Soc. (1966) 530–531Google Scholar
  37. 37.
    Helferich, B.; Zirner, J., “Zur Synthese von Tetraacetyl-hexosen mit freiem 2-Hydroxyl. Synthese einiger Disaccharide”, Chem. Berichte (1962) 95, 2604–2611CrossRefGoogle Scholar
  38. 38.
    Zemplén, G.; Csürös, Z., “Synthesen in der Kohlenhydrat-Gruppe mit Hilfe von sublim- iertem Eisenchlorid, II. Mitteil.: Darstellung der Cellobioside der alpha-Reihe”, Berichte (1931) 64, 993–1000Google Scholar
  39. 39.
    Zemplén, G., “Recent results in carbohydrate research”, Ber. (1941) 74A, 75–92Google Scholar
  40. 40.
    Colley, A., Ann. Chim. Phys. (1870)21, 363Google Scholar
  41. 41.
    Fischer, E.; Armstrong, E. F., “Ueber die isomeren Acetohalogen-Derivate des Traubenzuckers und die Synthese der Glucoside”, Ber. (1901) 34, 2885–2900Google Scholar
  42. 42.
    Fischer, E., “Notiz über die Acetohalogen-glucosen und die p-Bromphenylosazone von Maltose und Melibiose”, Berichte (1911) 44, 1898–1904Google Scholar
  43. 43.
    Wolfrom, M. L.; Fields, D. L., “A polymer-homologous series of beta-D-acetates from cellulose”, Tappi (1957) 40, 335–337Google Scholar
  44. 44.
    Glaudemans, C. P. J.; Fletcher, H. G., Jr., “Synthesis of the Two 2-O-Nitro-3,5-di-O-p-nitrobenzoyl-D-arabinofuranosyl Chlorides, an Anomeric Pair of Crystalline Pentofuranosyl Halides Having a Nonparticipating Group at C-2”, J. Org. Chem. (1964) 29, 3286–3290CrossRefGoogle Scholar
  45. 45.
    Pacsu, E., “Über die Einwirkung von Titan (IV)-chlorid auf Zucker-Derivate, I.: Neue Methode zur Darstellung der α-Aceto-chlor-zucker und Umlagerung des β-Methyl-glucosids in seine α-Form”, Ber. (1928) 61, 1508–1513Google Scholar
  46. 46.
    Arlt, v. F., “Zur Kenntnis der Glycose”, Monatsh. Chem. (1901) 22, 144–150CrossRefGoogle Scholar
  47. 47.
    Skraup, Zd. H.; Kremann, R., “Über Acetochlorglucose, -Galactose und - Milchzucker”, Monatsh. Chem. (1901) 22, 375–384CrossRefGoogle Scholar
  48. 48.
    Egan, L. P.; Squires, T. G.; Vercellotti, J. R., “Acetylated aldosyl chlorides by reaction of aldose peracetates with zinc chloride-thionyl chloride”, Carbohydr. Res. (1970) 14, 263–266CrossRefGoogle Scholar
  49. 49.
    Ness, R. K.; Fletcher, H. G., Jr.; Hudson, C. S., “New Tribenzoyl-D-ribopyranosyl Halides and Their Reactions with Methanol”, J. Am. Chem. Soc. (1951) 73, 959–963CrossRefGoogle Scholar
  50. 50.
    Ness, R. K.; Fletcher, H. G., Jr.,,” The Anomeric 2,3,5-Tri-O-benzoyl-D-arabinosyl Bromides and Other D-Arabinofuranose Derivatives”, J. Am. Chem. Soc. (1958) 80, 2007–2010CrossRefGoogle Scholar
  51. 51.
    Schlubach, H. H., “Über die isomere, linksdrehende Aceto-chlor-glucose”, Ber. (1926) 59, 840–844Google Scholar
  52. 52.
    Lemieux, R. U.; Hayami, J.-I., The Mechanism of the Anomerization of the Tetra-O-Acetyl-D-Glucopyranosyl Chlorides”, Can. J. Chem. (1965) 43, 2162CrossRefGoogle Scholar
  53. 53.
    Toshima, K., “Glycosyl fluorides in glycosidations”, Carbohydr. Res. (2000) 327, 15–26CrossRefGoogle Scholar
  54. 54.
    Tsuchiya, T., “Chemistry and Developments of Fluorinated Carbohydrates”. Adv. Carbohydr. Chem. Biochem. (1990) 48, 91–277CrossRefGoogle Scholar
  55. 55.
    Shimizu, M.; Togo, H.; Yokoyama, M., “Chemistry of glycosyl fluorides”, Synthesis (1998) 54, 799–822CrossRefGoogle Scholar
  56. 56.
    Mukaiyama, T.; Murai, Y.; Shoda, S., “An efficient method for glucosylation of hydroxy compounds using glucopyranosyl fluoride”, Chem. Lett. (1981) 431–432Google Scholar
  57. 57.
    Mukaiyama, T.; Hashimoto, Y.; Shoda, S., “Stereoselective synthesis of 1,2-cis-glycofuranosides using glycofuranosyl fluorides”, Chem. Lett. (1983) 935–938Google Scholar
  58. 58.
    Hashimoto, S.; Hayashi, M.; Noyori, R., “Glycosylation using glucopyranosyl fluorides and silicon-based catalysts. Solvent dependency of the stereoselection”, Tetrahedron Lett. (1984) 25, 1379–1382CrossRefGoogle Scholar
  59. 59.
    Ogawa, T.; Takahashi, Y., “Total synthesis of α-cyclodextrin”, Carbohydr. Res. (1985) 138, C5-C9CrossRefGoogle Scholar
  60. 60.
    Takahashi, Y.; Ogawa, T., “Total synthesis of cyclomaltohexaose”, Carbohydr. Res. (1987) 164, 277–296CrossRefGoogle Scholar
  61. 61.
    Nicolaou, K. C.; Chucholowski, A.; Dolle, R. E.; Randall, J. L., “Reactions of glycosyl fluorides. Synthesis of O-, S-, and N-glycosides”, J. Chem. Soc. Chem. Commun. (1984), 1155–1156Google Scholar
  62. 62.
    Kunz, H.; Sager, W., “Stereoselective glycosylation of Alcohols and Silyl Ethers Using Glycosyl Fluorides and Boron Trifluoride”, Helv. Chim. Acta (1985) 68, 283–287CrossRefGoogle Scholar
  63. 63.
    Kunz, H.; Waldmann, H., “Directed stereoselective synthesis of - and -N-acetyl neuraminic acid–galactose disaccharides using 2-choro and 2-fluoro derivatives of neuraminic acid allyl ester”, J. Chem. Soc., Chem. Commun. (1985), 638–640Google Scholar
  64. 64.
    Vozny, Ya. V.; Galoyan, A. A.; Chizhov, O. S., “Novel method for O-glycoside bond formation. Reaction of glycosyl fluorides with trimethylsilyl ethers”, Bioorg. Khim. (1985) 11, 276–278Google Scholar
  65. 65.
    Matsumoto, T.; Maeta, H.; Suzuki, K.; Tsuchihashi, G., “New glycosidation reaction 1: Combinational use of Cp 2 ZrCl 2 -AgClO 4 for activation of glycosyl fluorides and application to highly β-selective glycosidation of D-mycinos”, Tetrahedron Lett. (1988) 29,3567–3570CrossRefGoogle Scholar
  66. 66.
    Suzuki, K.; Maeta, H.; Matsumoto, T.; Tsuchihashi, G., “New glycosidation reaction 2. preparation of 1-fluoro-d-desosamine derivative and its efficient glycosidation by the use of Cp 2 HfCl 2 -AgClO 4 as the activator”, Tetrahedron Lett. (1988) 29, 3571–3574CrossRefGoogle Scholar
  67. 67.
    Matsumoto, T.; Maeta, H.; Suzuki, K.; Tsuchihashi, G., First total synthesis of mycinamicin IV and VII.: Successful application of new glycosidation reaction”, Tetrahedron Lett. (1988) 29, 3575–3578CrossRefGoogle Scholar
  68. 68.
    Matsumoto, T.; Katsuki, M.; Suzuki, K., Chem. Lett. “Rapid O-glycosidation of phenols with glycosyl fluoride by using the combinational activator, Cp 2 HfCl 2 -AgClO 4” Chem. Lett. (1989) 437–440Google Scholar
  69. 69.
    Suzuki, K.; Maeta, H.; Suzuki, T.; Matsumoto, T.,“Cp 2 ZrCl 2 —AgBF 4 in Benzene: A new reagent system for rapid and highly selective α-mannoside synthesis from tetra-O-benzyl-image-mannosyl fluoride”, Tetrahedron Lett. (1989) 30, 6879–6882CrossRefGoogle Scholar
  70. 70.
    Nicolaou, K. C.; Caulfield, T. J.; Kataoka, H.; Stylianides, N. A., “Total synthesis of the tumor-associated Lex family of glycosphingolipids”, J. Am. Chem. Soc. (1990) 112, 3693–3695CrossRefGoogle Scholar
  71. 71.
    Nicolaou, K. C.; Hummel, C. W.; Iwabuchi, Y., “Total synthesis of sialyl dimeric Lex”, J. Am. Chem. Soc. (1992) 114, 3126–3128CrossRefGoogle Scholar
  72. 72.
    Maeta, H.; Matsumoto, T.; Suzuki, K., “Dibutyltin diperchlorate” for activation of glycosyl fluoride”, Carbohydr. Res. (1993) 249, 49–56CrossRefGoogle Scholar
  73. 73.
    Kobayashi, S.; Koide, K.; Ohno, M., Gallium reagents in organic synthesis: Dimethylgallium chloride and triflate as activators in glycosidation using glycopyranosyl fluorides”, Tetrahedron Lett. (1990) 31, 2435–2438CrossRefGoogle Scholar
  74. 74.
    Wessel, H. P., “Comparison of catalysts in α-glucosylation reactions and identification of triflic anhydride as a new reactive promoter”, Tetrahedron Lett. (1990) 31, 6863–6866CrossRefGoogle Scholar
  75. 75.
    Wessel, H. P.; Ruiz, N.,α-Glucosylation reactions with 2,3,4,6-tetra-O-benzyl-β-D-glucopyranosyl fluoride and triflic anhydride as promoter”, J. Carbohydr. Chem. (1991) 10, 901–910CrossRefGoogle Scholar
  76. 76.
    Böhm, G.; Waldmann, H., “Synthesis of glycosides of fucose under neutral conditions in solutions of LiClO 4 in organic solvents”, Tetrahedron Lett. (1995) 36, 3843–3846CrossRefGoogle Scholar
  77. 77.
    Böhm, G.; Waldmann, H., “O-Glycoside Synthesis under Neutral Conditions in Concentrated Solutions of LiClO4 in Organic Solvents Employing Benzyl-Protected Glycosyl Donors”, Liebigs Ann. Chem. (1996) 613–619Google Scholar
  78. 78.
    Böhm, G.; Waldmann, H., “O-Glycoside Synthesis under Neutral Conditions in Concentrated Solutions of LiClO4 in Organic Solvents Employing O-Acyl-Protected Glycosyl Donors”, Liebigs Ann. Chem. (1996) 621–625Google Scholar
  79. 79.
    Hosono, S.; Kim, W.-S.; Sasai, H.; Shibasaki, M., “A New Glycosidation Procedure Utilizing Rare Earth Salts and Glycosyl Fluorides, with or without the Requirement of Lewis Acid”, J. Org. Chem. (1995) 60, 4–5CrossRefGoogle Scholar
  80. 80.
    Kim, W.-S.; Hosono, S.; Sasai, H.; Shibasaki, M., “Rare earth perchlorate catalyzed glycosidation of glycosyl fluorides with trimethylsilyl ethers”, Tetrahedron Lett. (1995) 36, 4443–4446CrossRefGoogle Scholar
  81. 81.
    Kim, W.-S.; Sasai, H.; Shibasaki, M., “β-Selective glycosylation with α-mannosyl fluorides using tin(II) triflate and lanthanum perchlorate”, Tetrahedron Lett. (1996) 37,7797–7800CrossRefGoogle Scholar
  82. 82.
    Takeuchi, K.; Mukaiyama, T., “Trityl tetrakis(pentafluorophenyl)borate catalyzed stereoselective glycosylation using glycopyranosyl fluoride as a glycosyl donor”, Chem. Lett. (1998) 555–556Google Scholar
  83. 83.
    Yokoyama, M., “Methods of synthesis of glycosyl fluorides”, Carbohydr. Res. (2000) 327, 5–14CrossRefGoogle Scholar
  84. 84.
    Hayashi, M.; Hashimoto, S.; Noyori, R., “Simple synthesis of glycosyl fluorides”, Chem. Lett. (1984) 1747–1750Google Scholar
  85. 85.
    Miethchen, R.; Kolp, G., “Reactions with and in anhydrous hydrogen fluoride systems. Part 8. Triethylamine trishydrofluoride – a convenient reagent for the stereoselective synthesis of glycosyl fluorides”, J. Fluorine Chem. (1993) 60, 49–55CrossRefGoogle Scholar
  86. 86.
    Markovski, L. N.; Pashinnik, V. E.; Kirsanov, A. V., “Application of dialkylamino-sulfur trifluorides in the synthesis of fluoroorganic compounds”, Synthesis (1973) 787–789Google Scholar
  87. 87.
    Middleton, W. J., “New fluorinating reagents. Dialkylaminosulfur fluorides”, J. Org. Chem. (1975) 40, 574–578CrossRefGoogle Scholar
  88. 88.
    Sharma, M.; Korytnyk, W., “A general and convenient method for synthesis of 6-fluoro-6-deoxyhexoes”, Tetrahedron Lett. (1977) 18, 573–576Google Scholar
  89. 89.
    Card, P. J., “Synthesis of fluorinated carbohydrates”, J. Carbohydr. Chem. (1985) 4, 451–487CrossRefGoogle Scholar
  90. 90.
    Rosenbrook, W., Jr., ; Riley, D. A.; Lartey, P. A., “A new method for the synthesis of glycosyl fluorides”, Tetrahedron Lett.(1985) 26, 3–4CrossRefGoogle Scholar
  91. 91.
    Posner, G. H.; Haines, S. R., “A convenient, one-step, high-yield replacement of an anomeric hydroxyl group by a fluorine atom using DAST. Preparation of glycosyl fluorides”, Tetrahedron Lett. (1985) 26, 5–8CrossRefGoogle Scholar
  92. 92.
    Crich, D.; Lim, L. B. L., “Diastereoselective free-radical reactions. Part 3. The methyl glucopyranos-1-yl and the 1,2-O-isopropylideneglucopyranos-1-yl radicals: conformational effects on diastereoselectivity”, J. Chem. Soc. Perkin Trans. I (1991) 2209–2214CrossRefGoogle Scholar
  93. 93.
    Kochetkov, N. K.; Bochkov, A. F., in R. Bognar, V. Bruckner, and Cs. Szántay, Recent Developments in the Chemistry of Natural Carbon Compounds, Akadémiai Kiadó, Budapest (1971), Vol. IV, p.77Google Scholar
  94. 94.
    Kochetkov, N. K.; Khorlin, A. Ya.; Bochkov, A. F., “A new method of glycosylation”, Tetrahedron (1967) 23, 693–707CrossRefGoogle Scholar
  95. 95.
    Kochetkov, N. K.; Bochkov, A. F.; Sokolovskaya, T. A.; Snyatkova, V. J., “Modifications of the orthoester method of glycosylation”, Carbohydr. Res. (1971) 16, 17–27CrossRefGoogle Scholar
  96. 96.
    Kochetkov, N. K.; Bochkov, A. F., “Synthesis of Oligosaccharides by the Orthoester Method”, Methods in Carbohydr. Chem. (1972) 6, 480–486Google Scholar
  97. 97.
    Kochetkov, N. K.; Khorlin, A. Ya.; Bochkov, A. F. “New synthesis of glycosides”, Tetrahedron Lett. (1964) 5, 289–293Google Scholar
  98. 98.
    Kochetkov, N. K.; Khorlin, A. Ya.; Bochkov, A. F., “Synthesis of disaccharides”, Dokl. Akad. Nauk SSSR (1965) 162, 104–107Google Scholar
  99. 99.
    Kochetkov, N. K.; Khorlin, A. Ya.; Bochkov, A. F.; Demushkina, L. B.; Zolotuchin, I. O., “Ortho ester method for synthesizing trisaccharides”, Zh. Obshch. Khim. (1967) 37, 1272–1277Google Scholar
  100. 100.
    Pacsu, E., “Carbohydrate Orthoester”, Advan. Carbohydr. Chem. (1945) 1, 77–127CrossRefGoogle Scholar
  101. 101.
    Wulf, G.; Krüger, W., “Untersuchungen Glykosidsynthese: III. Teil. Eine neue dar stellungsmethode für 1,2-D-glucose-orthoester”, Carbohydr. Res. (1971) 19, 139–142CrossRefGoogle Scholar
  102. 102.
    Kochetkov, N. K.; Klimov, E. M.; Derevitskaya, V. A., “Synthesis of glycosides by glycosylation of tert-butyl ethers of alcohols”, Dokl. Akad. Nauk. SSSR(1970) 192,336–338Google Scholar
  103. 103.
    Kochetkov, N. K.; Derevitskaya, V. A.; Klimov, E. M., “Synthesis of glycosides via tert.-butyl ethers of alcohols”, Tetrahedron Lett. (1969) 10, 4769–4772Google Scholar
  104. 104.
    Schulz, M.; Boeden, H.-F.; Berlin, P., “Zuckerperoxide, III. Ein neuer Zuckerabbau durch Fragmentierung acylierter Peroxyglykoside”, Liebigs Ann. Chem. (1967) 703, 190–201CrossRefGoogle Scholar
  105. 105.
    Kochetkov, N. K.; Khorlin, A. Ya.; Bochkov, A. F., “Structure and glycoside formation ability of sugar ortho esters”, Synthesis of 6-0-(α-L-arabinosyl)-D-glucoses, Zh. Obshch. Khim. (1967) 37, 338–343Google Scholar
  106. 106.
    Bochkov, A. F.; Betaneli, V. I.; Kochetkov, N. K., “Sugar orthoesters. XV. Relation to conditions and mechanism of proton-catalyzed reactions of protected α-D-glucopyranose 1,2-alkylorthoacetates in media of low polarity”, Bioorganicheskaya Khimiya (1976) 2, 927–941Google Scholar
  107. 107.
    Bochkov, A. F.; Betaneli, V. I.; Kochetkov, N. K., “Sugar orthoesters. 16. Mechanism of the mercuric bromide-catalyzed isomerization of protected α-D-glucopyranose 1,2-orthoacetates in nitromethane”, Bioorganicheskaya Khimia (1977) 3, 39–45Google Scholar
  108. 108.
    Burshtein, K. Ya.; Fundiler, I. N.; Bochkov, A. F., “Molecular orbital calculations relating to the mechanism of the reactions of sugar orthoesters: 1,2,4-orthoacetyl-α-D-xylopyranose”, Tetrahedron (1975) 31, 1303–1306CrossRefGoogle Scholar
  109. 109.
    Heitman, J. A.; Richards, G. F.; Schroeder, L. R., “Carbohydrate orthoesters. III. The crystal and molecular structure of 3,4,6-tri-O-acetyl-1,2-O-[1-(exo-ethoxy) ethylidene]-α-D-glucopyranose”, Acta Crystallogr. (1974) B30, 2322–2328Google Scholar
  110. 110.
    Farkas, I.; Dinya, Z.; Szabo, I. F.; Bognar, R., “Cleavage of sugar 1,2-(ortho esters) with dichloromethyl methyl ether”, Carbohydr. Res. (1972) 21, 331–333CrossRefGoogle Scholar
  111. 111.
    Lemieux, R. U.; Cipera, J. D. T., “The Preparation and Properties of α-D-Glucopyranose 1, 2-(Ethyl Orthoacetate) Triacetate”, Can. J. Chem. (1956) 34, 906–910CrossRefGoogle Scholar
  112. 112.
    Fischer, E.; Bergmann, M.; Rabe, A., “Über Acetobrom-rhamnose und ihre Ver wendung zur Synthese von Rhamnosiden”, Ber. (1920) 53, 2362–2388Google Scholar
  113. 113.
    Korytnyk, W.; Mills, J. A., “Preparation and properties of some poly-O-acetylglycosyl chlorides of the unstable series” J. Chem. Soc. (1959) 636–649Google Scholar
  114. 114.
    Mazurek, M.; Perlin, A. S., “Synthesis of β-D-Mannose 1, 2-Orthoacetates”, Can. J. Chem. (1965) 43, 1918–1923CrossRefGoogle Scholar
  115. 115.
    Helferich, B.; Weiss, K., “Zur Synthese von Glucosiden und von nicht- reduzierenden Disacchariden”, Chem. Berichte (1956) 89, 314–321CrossRefGoogle Scholar
  116. 116.
    Khorlin, A. Ya.; Bochkov, A. F.; Kochetkov, N. K., “A new synthesis of sugar ortho esters”, Izv. Akad. Nauk SSSR, Ser. Khim. (1964) 2214–2216Google Scholar
  117. 117.
    Schmidt, R. R., “Neue Methoden zur Glycosid- und Oligosaccharidsynthese-gibt es Alternativen zur Koenigs-Knorr-Methode?”, Angew. Chem. (1986) 98, 213–236CrossRefGoogle Scholar
  118. 118.
    Schmidt, R. R., “New Methods for the Synthesis of Glycosides and Oligosaccharides. Are There Alternatives to the Koenigs-Knorr Method?” Angew, Chem. Int. Ed. Engl. (1986) 25, 212–235CrossRefGoogle Scholar
  119. 119.
    Schmidt, R. R. in Bartmann, W. Sharpless, K. B.(Eds), “Stereochemistry of Organic and Bioorganic Transformations”, Workshop Conferences Hoechst, Vol. 17, pp. 169–189. VCH Verlaggesellschaft GmbH, Weinheim, 1987Google Scholar
  120. 120.
    Schmidt, R. R., “Recent developments in the synthesis of glycoconjugates”, Pure Appl. Chem. (1989) 61, 1257–1270CrossRefGoogle Scholar
  121. 121.
    Trost, B. M.; Flemming, I.; Winterfeldt, E. (Eds.), “Comprehensive Organic Synthesis”, Vol. 6, pp. 33–64, Pergamon Press, Oxford, 1991Google Scholar
  122. 122.
    Schmidt, R. R.; Michel, J., “Direct o-glycosyl trichloroacetimidate formation, nucleophilicity of the anomeric oxygen atom”, Tetrahedron Lett.(1984) 25, 821–824CrossRefGoogle Scholar
  123. 123.
    Schmidt, R. R.; Michel, J., “Synthese von linearen und verzweigten Cellotetraosen”, Angew. Chem. (1982) 94, 77–78; Angew. Chem. Int. Ed. Engl. (1982) 21, 77–78; Angew. Chem. Suppl. (1982) 78–84CrossRefGoogle Scholar
  124. 124.
    Schmidt, R. R.; Stumpp, M., “Glycosylimidate, 8. Synthese von 1-Thioglycosiden”, Liebigs Ann. Chem. (1983) 1249–1256Google Scholar
  125. 125.
    Schmidt, R. R.; Michel, J.; Roos, M., “Glycosylimidate, 12 Direkte Synthese von O-α- und O-β-Glycosyl-imidaten”, Liebigs Ann. Chem. (1984) 1343–1357Google Scholar
  126. 126.
    Schmidt, R. R.; Esswein, A., “Einfache Synthese von KDO-α-Glycosiden durch anomer selektive O-Alkylierung”, Angew. Chem. (1988) 100, 1234–1236CrossRefGoogle Scholar
  127. 127.
    Schuhmacher, M., Dissertation, University of Constance, 1985Google Scholar
  128. 128.
    Schmidt, R. R.; Michel, J., Angew. Chem. (1980) 92, 783–784; “Facile Synthesis of alpha- and beta-O-Glycosyl Imidates; Preparation of Glycosides and Disaccharides”, Angew. Chem. Int. Ed. Engl. (1980) 19, 731–732Google Scholar
  129. 129.
    Schmidt, R. R.; Behrendt, M.; Toepfer, A., “Nitriles as Solvents in Glycosylation Reactions: Highly Selective β-Glycoside Synthesis”, Synlett (1990) 694–696Google Scholar
  130. 130.
    Paulsen, H., “Fortschritte bei der selektiven chemischen Synthese komplexer Oligo saccharide”, Angew. Chem. (1982) 94, 184–201; “Advances in Selective Chemical Syntheses of Complex Oligosaccharides”, Angew. Chem. Int. Ed. Engl. (1982) 21, 155–173CrossRefGoogle Scholar
  131. 131.
    Wulff, G.; Röhle, G., “Ergebnisse und Probleme der O-Glykosidsynthese”, Angew. Chem. (1974) 86, 173–187; “Results and Problems of O-Glycoside Synthesis”, Angew. Chem. Int. Ed. Engl. (1974) 13, 157–170; Angew. Chem. Int. Ed. Engl. (1988) 27, 1178–1180CrossRefGoogle Scholar
  132. 132.
    Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H., “Asymmetric total synthesis of erythromycin. 1. Synthesis of an erythronolide A secoacid derivative via asymmetric induction”, J. Am. Chem. Soc. (1981) 103, 3210–3213CrossRefGoogle Scholar
  133. 133.
    Woodward, R. B.; Au-Yeung, B. W.; Balaram, P.; Browne, L. J.; Ward, D. E.; Card, P. J.; Chen, C. H., “Asymmetric total synthesis of erythromycin. 2. Synthesis of an erythronolide A lactone system”, J. Am. Chem Soc. (1981) 103, 3213–3215CrossRefGoogle Scholar
  134. 134.
    Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.-W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chênevert, R. B.; Fliri, A.; Frobel, K.; Gais, H.-J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, T.; Malchenko, S.; Martens, J.; Mathews, R. S.; Ong, B. S.; Press, J. B.; Rajan Babu, T. V.; Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchik, W. C.; Wade, P. A.; Williams, R. M.; Wong, N.-C., “Asymmetric total synthesis of erythromycin. 3. Total synthesis of erythromycin”, J. Am. Chem. Soc. (1981) 103, 3215–3217CrossRefGoogle Scholar
  135. 135.
    Hanessian, S.; Bacquet, C.; Lehong, N., “Chemistry of the glycosidic linkage. Exceptionally fast and efficient formation of glycosides by remote activation”, Carbohydr. Res. (1980) 80, C17–C22CrossRefGoogle Scholar
  136. 136.
    Fraser-Reid, B.; Wu, Z.; Udodong, U.E.; Ottosson, H., “Armed/disarmed effects in glycosyl donors: rationalization and sidetracking”, J. Org. Chem. (1990) 55, 6068–6070CrossRefGoogle Scholar
  137. 137.
    Konradsson, P.; Mootoo, D. R.; McDevitt, R. E.; Fraser-Reid, B., “Iodonium ion generated in situ from N-iodosuccinimide and trifluoromethanesulphonic acid promotes direct linkage of disarmed pent-4-enyl glycosides”, J. Chem. Soc. Chem. Commun. (1990) 270–272Google Scholar
  138. 138.
    Konradsson, P.; Udodong, U. E.; Fraser-Reid, B., “Iodonium promoted reactions of disarmed thioglycosides”, Tetrahedron Lett. (1990) 31, 4313–4316CrossRefGoogle Scholar
  139. 139.
    Fraser-Reid, B.; Madsen, R., “Oligosaccharide Synthesis by n-Pentenyl Glycosides” in Preparative Carbohydrate Chemistry, Hanessian, S. Ed., Marcel Dekker Inc., New York, 1996, pp. 339–356Google Scholar
  140. 140.
    Fraser-Reid, B.; Udodong, U. E.; Wu., Z.; Ottosson, H.; Merritt, J. R.; Rao, C. S.; Roberts, C.; Madsen, R., “n-Pentenyl Glycosides in Organic Chemistry: A Contemporary Example of Serendipity”, Synlett (1992) 927–942Google Scholar
  141. 141.
    Madsen, R.; Fraser-Reid, B., “Modern Methods in Carbohydrate Synthesis” Kahan, S.; O'Neill, R. A. (Eds.), Harwood Academic Publishers, Amsterdam, 1996, Chapt. 7Google Scholar
  142. 142.
    Boons, G.-J., “Glycosides as Donors”, in “Glycoscience: Chemistry and Chemical Biology”, Vol. I, Fraser-Reid, B.; Kuniaki, T.; Thiem, J., Eds., Springer Verlag, Berlin, 2001, pp. 551–581Google Scholar
  143. 143.
    Merritt, J. R.; Naisang, E.; Fraser-Reid, B., “n-Pentenyl Mannoside Precursors for Synthesis of the Nonamannan Component of High Mannose Glycoproteins”, J. Org. Chem. (1994) 59, 4443–4449CrossRefGoogle Scholar
  144. 144.
    Mootoo, D. R.; Konradsson, P.; Udodong, U. E.; Fraser-Reid, B., “Armed and dis-armed n-pentenyl glycosides in saccharide couplings leading to oligosaccharides”, J. Am. Chem. Soc. (1988) 110, 5583–5584CrossRefGoogle Scholar
  145. 145.
    David, S.; Lubineau, A.; Vatèle, J.-M., “Chemical synthesis of 2-O-(-L-fucopyranosyl)-3-O-(2-acetamido-2-deoxy-α-D-galactopyranosyl)-D-galactose, the terminal structure in the blood-group A antigenic determinant” J. Chem. Soc. Chem. Commun. (1978)535–537Google Scholar
  146. 146.
    Vasella, A., “New reactions and intermediates involving the anomeric center”, Pure Appl. Chem. (1991) 63, 507–518CrossRefGoogle Scholar
  147. 147.
    Kahne, D.; Yang, D.; Lim, J. J.; Miller, R.; Paguaga, E., “The use of alkoxy-substituted anomeric radicals for the construction of beta-glycosides” J. Am. Chem. Soc. (1988) 110, 8716–8717CrossRefGoogle Scholar
  148. 148.
    Lemieux, R. U.; Levine, S., “Synthesis of Alkyl 2-Deoxy-α-D-Glycopyranosides and Their 2-Deuterio Derivatives”, Can. J. Chem. (1964) 42, 1473–1480CrossRefGoogle Scholar
  149. 149.
    Lemieux, R. U.; Morgan, A. R., “The Synthesis of β-D-Glucopyranosyl 2-Deoxy-α-D-Arabino-Hexopyranoside”, Can. J. Chem. (1965) 43, 2190–2197CrossRefGoogle Scholar
  150. 150.
    Thiem, J.; Karl, H.; Schwentner, J., “Synthese α-verknüpfter 2'-Deoxy-2'-iododisaccharide” Synthesis (1978) 696–698Google Scholar
  151. 151.
    Thiem, J.; Karl, H., “Syntheses of methyl 3-O-(α-D-olivosyl)-α-D-olivoside”, Tetrahedron Lett. (1978) 19, 4999–5002Google Scholar
  152. 152.
    Thiem, J.; Ossowski, P., “Studies of hexuronic acid ester glycals and the synthesis of 2-deoxy-β-glycoside precursors”, J. Carbohydr. Chem. (1984) 3, 287–313CrossRefGoogle Scholar
  153. 153.
    Thiem, J.; Prahst, A.; Lundt, I., “Untersuchungen zur beta-Glycosylierung nach dem N-Iodsuccinimid-Verfahren: Synthese der terminalen Disaccharideinheit von Orthosomycinen”, Liebigs Ann. Chem. (1986) 1044–1056Google Scholar
  154. 154.
    Thiem, J.; Klaffke, W., “Facile stereospecific synthesis of deoxyfucosyl disaccharide units of anthracyclines”, J. Org. Chem. (1989) 54, 2006–2009CrossRefGoogle Scholar
  155. 155.
    Thiem, J., ACS Symp. Ser. (1989) 396, Kap.8Google Scholar
  156. 156.
    Miljkovic, M.; Gligorijevic, M.; Glisin, Dj., “Steric and Electrostatic Interactions in Reactions of Carbohydrates. III. Direct Displacement of the C-2 Sulfonate of Methyl 4, 6-O-Benzylidene-3-O-methyl-2-O-methylsulfonyl-β-D-gluco- and mannopyranosides”, J. Org. Chem. (1974) 39, 3223–3226CrossRefGoogle Scholar
  157. 157.
    Lemieux, R. U.; Fraser-Reid, B., “The Mechanisms of the Halogenations and Halogenomethoxylations of D-Glucal Triacetate, D-Galactal Triacetate, and 3, 4-Dihydropyran”, Can. J. Chem. (1965) 43, 1460–1475CrossRefGoogle Scholar
  158. 158.
    Friesen, R. W.; Danishefsky, S. J., “On the controlled oxidative coupling of glycals: a new strategy for the rapid assembly of oligosaccharides”, J. Am. Chem. Soc. (1989) 111,6656–6660CrossRefGoogle Scholar
  159. 159.
    Friesen, R. W.; Danishefsky, S. J., “On the use of the haloetherification method to synthesize fully functionalized disaccharides”, Tetrahedron (1990) 46, 103–112CrossRefGoogle Scholar
  160. 160.
    Murray, R. W.; Jeyaraman, R., “Dioxiranes: synthesis and reactions of methyldioxiranes”, J. Org. Chem. (1985) 50, 2847–2853CrossRefGoogle Scholar
  161. 161.
    Halcomb, R. L.; Danishefsky, S. J., “On the direct epoxidation of glycals: application of a reiterative strategy for the synthesis of β-linked oligosaccharides”, J. Am. Chem. Soc. (1989) 111, 6661–6666CrossRefGoogle Scholar
  162. 162.
    Danishefsky, S. J.; Bilodeau, M. T., “Glycals in Organic Synthesis: The Evolution of Comprehensive Strategies for the Assembly of Oligosaccharides and Glycoconjugates of Biological Consequence”, Angew. Chem. Int. Ed. Engl. (1996) 35, 1380–1419CrossRefGoogle Scholar
  163. 163.
    Wolfrom, M. L.; Anno, K., “D-Xylosamine”, J. Am. Chem. Soc. (1953) 75, 1038–1039CrossRefGoogle Scholar
  164. 164.
    Wolfrom, M. L.; Tanghe, L. J.; George, R. W.; Waisbrot, S. W., “Acetals of Galactose and of Dibenzylideneglucose”, J. Am. Chem. Soc.(1938) 60, 132–134CrossRefGoogle Scholar
  165. 165.
    Weygand, F.; Ziemann, H., “Glykosylbromide aus Äthylthioglykosiden, II”, Liebigs Ann. Chem. (1962) 657, 179–198CrossRefGoogle Scholar
  166. 166.
    Ferrier, R. J.; Hay, R. W.; Vethaviyasar, N., “A potentially versatile synthesis of glycosides”, Carbohydr. Res. (1973)27, 55–61CrossRefGoogle Scholar
  167. 167.
    Mukaiyama, T.; Nakatsuka, T.; Shoda, S., “An efficient glucosylation of alcohol using 1-thioglucoside derivative” Chem. Lett. (1979) 487–490Google Scholar
  168. 168.
    van Cleve, J. W., “Reinvestigation of the preparation of cholesteryl 2,3,4,6-tetra-O-benzyl-α-image-glucopyranoside”, Carbohydr. Res. (1979) 70, 161–164CrossRefGoogle Scholar
  169. 169.
    Wuts, P. G. M.; Bigelow, S. S., “Total synthesis of oleandrose and the avermectin disaccharide, benzyl.alpha.-L-oleandrosyl-.alpha.-L-4-acetoxyoleandroside”, J. Org. Chem. (1983) 48, 3489–3493CrossRefGoogle Scholar
  170. 170.
    Nicolaou, K. C.; Seitz, S. P.; Papahatjis, D. P., “A mild and general method for the synthesis of 0-glycosides”, J. Am. Chem. Soc. (1983) 105, 2430–2434CrossRefGoogle Scholar
  171. 171.
    Garegg, P. J.; Henrichson, C.; Norberg, T., “A reinvestigation of glycosidation reactions using 1-thioglycosides as glycosyl donors and thiophilic cations as promoters”, Carbohydr. Res. (1983) 116, 162–165CrossRefGoogle Scholar
  172. 172.
    Tsai, T. Y. R.; Jin, H.; Wiesner, K., “A stereoselective synthesis of digitoxin. On cardioactive steroids. XIII”, Can. J. Chem. (1984) 62, 1403–1405CrossRefGoogle Scholar
  173. 173.
    Lönn, H., Chem. Commun. Stockholm Univ., No. 2 (1984) 1–30Google Scholar
  174. 174.
    Lönn, H., “Synthesis of a tri- and a hepta-saccharide which contain α-L-fucopyranosyl groups and are part of the complex type of carbohydrate moiety of glycoproteins”, Carbohydr. Res. (1985) 139, 105–113Google Scholar
  175. 175.
    Lönn, H., “Synthesis of a tetra- and a nona-saccharide which contain α-L-fucopyranosyl groups and are part of the complex type of carbohydrate moiety of glycoproteins”, Carbohydr. Res. (1985) 139, 115–121Google Scholar
  176. 176.
    Lönn, H., “Glycosylation using a thioglycoside and methyl trifluoromethanesulfonate. A new and efficient method for cis and trans glycoside formation”, J. Carbohydr. Chem. (1987) 6, 301–306CrossRefGoogle Scholar
  177. 177.
    Fügedi, P.; Garegg, P. J., “A novel promoter for the efficient construction of 1,2-trans linkages in glycoside synthesis, using thioglycosides as glycosyl donors”, Carbohydr. Res. (1986) 149, C9–C12CrossRefGoogle Scholar
  178. 178.
    Poszgay, V.; Jennings, H. J., “A new method for the synthesis of O-glycosides from S-glycosides”, J. Org. Chem. (1987) 52, 4635–4637; Poszgay, V.; Jennings, H. J., “Synthetic oligosaccharides related to group B streptococcal polysaccharides. 3. Synthesis of oligosaccharides corresponding to the common polysaccharide antigen of group B streptococci”, J. Org. Chem. (1988) 53, 4042–4052CrossRefGoogle Scholar
  179. 179.
    Dasgupta, F.; Garegg, P. J., “Alkyl sulfenyl triflate as activator in the thioglycoside- mediated formation of β-glycosidic linkages during oligosaccharide synthesis”, Carbohydr. Res. (1988) 177, C13–C17CrossRefGoogle Scholar
  180. 180.
    Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N., “Novel highly stereospecific method of 1,2-cis-glycosylation. Synthesis of α-D-glucosyl-D-glucoses”, Tetrahedron Lett. (1989) 30, 5459–5462CrossRefGoogle Scholar
  181. 181.
    Ito, Y.; Ogawa, T., “Benzeneselenenyl triflate as a promoter of thioglycosides: A new method for O-glycosylation using thioglycosides”, Tetrahedron Lett. (1988) 29, 1061–1064CrossRefGoogle Scholar
  182. 182.
    Reddy, G. V.; Kulkarni, V. R.; Mereyalla, H. B., “A mild general method for the synthesis of α-linked disaccharides”, Tetrahedron Lett. (1989) 30, 4283–4286CrossRefGoogle Scholar
  183. 183.
    Veenemann, G. H.; van Leeuwen, S. H.; van Boom, J. H., “Iodonium ion promoted reactions at the anomeric centre. II An efficient thioglycoside mediated approach toward the formation of 1,2-trans linked glycosides and glycosidic esters”, Tetrahedron Lett. (1990) 31, 1331–1334CrossRefGoogle Scholar
  184. 184.
    Veenemann, G. H.; van Boom, J. H., “An efficient thioglycoside-mediated formation of α-glycosidic linkages promoted by iodonium dicollidine perchlorate”, Tetrahedron Lett. (1990) 31, 275–278CrossRefGoogle Scholar
  185. 185.
    Tsuboyama, K.; Takeda, K.; Torii, K.; Ebihara, M.; Shimizu, J.; Suzuki, A.; Sato, N.; Furuhata, K.; Ogura, H., “A convenient synthesis of S-glycosyl donors of D-glucose and O-glycosylations involving the new reagent”, Chem. Pharm. Bull. (1990) 38, 636–638Google Scholar
  186. 186.
    Marra, A.; Mallet, J.-M.; Amatore, C.; Sinaÿ, P., “Glycosylation Using a One-Electron-Transfer Homogeneous Reagent: A Novel and Efficient Synthesis of β-Linked Disaccharides”, Synlett (1990) 572–574Google Scholar
  187. 187.
    Fügedi, P.; Garegg, P. J.; Oscarson, S.; Rosén, G.; Silwanis, B. A., “Glycosyl 1-piperidinecarbodithioates in the synthesis of glycosides”, Carbohydr. Res. (1991) 211, 157–162CrossRefGoogle Scholar
  188. 188.
    Braccini, I.; Derouet, C.; Esnault, J.; Hervé de Penhoat, C.; Mallet, J.-M.; Michon, V.; Sinaÿ, P., “Conformational analysis of nitrilium intermediates in glycosylation reactions”, Carbohydr. Res. (1993) 246, 23–41CrossRefGoogle Scholar
  189. 189.
    Garegg, P. J.; Hällgren, C., “Synthesis of 2-(p-trifluoroacetamidophenyl)ethyl O-β- D-mannopyranosyl-(12)-O-α-D-mannopyranosyl-(12)-O-[α-D-glucopyranosyl-(13)]-O-α-D-mannopyranosyl-(12)-O-β-D-mannopyranosyl-(13)-2-acetamido-2-deoxy-β-D-glucopyranoside, corresponding to the repeating unit of the Salmonella thompson, serogroup C1 O-antigen lipopolysaccharide, and of a pentasaccharide fragment thereof”, J. Carbohydr. Chem. (1992) 11, 425–443CrossRefGoogle Scholar
  190. 190.
    Hasegawa, A.; Nagahama, T.; Okhi, H.; Kiso, M., “Synthetic studies on sialoglycoconjugates 41: a facile total synthesis of ganglioside GM2”, J. Carbohydr. Chem. (1992) 11, 699–714CrossRefGoogle Scholar
  191. 191.
    Hotta, K.; Ishida, H.; Kiso, M.; Hasegawa, A., “Synthetic studies on sialoglycoconjugates. 54: Synthesis of I-active ganglioside analog”, J. Carbohydr. Chem.(1994) 13, 175–191CrossRefGoogle Scholar
  192. 192.
    Garegg, P. J., “Thioglycosides as Glycosyl Donors in Oligosaccharide Synthesis”, Advan. Carbohydr. Chem. Biochem. (1997) 52, 179–205, references 97–183; Garegg, P. J., “Synthesis and Reactions of Glycosides”, Adv. Carbohydr. Chem. Biochem. (2004) 59, 69–134CrossRefGoogle Scholar
  193. 193.
    Horton, D.; Hutson, D. H., “Developments in the Chemistry of Thiosugars”, Adv. Carbohydr. Chem.(1963) 18., 123–199Google Scholar
  194. 194.
    Norberg, T., in Khan, S. H.; O'Neill, R. A. (Eds.), Modern Methods in Carbohydrate Synthesis, pp. 82–106, Harwood Academic Publishers, New York, 1995, and references cited thereinGoogle Scholar
  195. 195.
    Contour, M.-O.; Defaye, J.; Little, M.; Wong, E., “Zirconium(IV) chloride-catalyzed synthesis of 1,2-trans-1-thioglycopyranosides”, Carbohydr. Res. (1989) 193, 283–287CrossRefGoogle Scholar
  196. 196.
    Dasgupta, F.; Garegg, P. J., “Synthesis of ethyl and phenyl 1-thio-1,2-trans-D-glycopyranosides from the corresponding per-O-acetylated glycopyranoses having a 1,2-trans-configuration using anhydrous ferric chloride as a promoter”, Acta Chem. Scand.(1989) 43, 471–475CrossRefGoogle Scholar
  197. 197.
    Pozsgay, V.; Jennings, H. J., “A new, stereoselective synthesis of methyl 1,2-image-1-thioglycosides”, Tetrahedron Lett. (1987) 28, 1375–1376CrossRefGoogle Scholar
  198. 198.
    Ogawa, T.; Matsui, M., “A new approach to 1-thioglycosides by lowering the nucleophilicity of sulfur through trialkylstannylation”, Carbohydr. Res. (1977) 54, C17–C21CrossRefGoogle Scholar
  199. 199.
    Ferrier, R.; Furneaux, R., “1, 2-trans-1-Thioglycosides”, Methods Carbohydr Chem. (1980) 8, 251–253Google Scholar
  200. 200.
    Ferrier, R. J.; Furneaux, R. H., “Synthesis of 1,2-trans-related 1-thioglycoside esters”, Carbohydr. Res. (1976) 52, 63–68CrossRefGoogle Scholar
  201. 201.
    Lemieux, R. U., “The Mercaptolysis of Glucose and Galactose Pentaacetate”, Can. J. Chem. (1951) 29, 1079–1091CrossRefGoogle Scholar
  202. 202.
    Lemieux, R. U.; Brice, C., “A Comparison of the Properties of Pentaacetates and Methyl 1, 2-Orthoacetates of Glucose and Mannose”, Can. J. Chem. (1955) 33, 109–119CrossRefGoogle Scholar
  203. 203.
    Horton, D., “1-Thioglycosides”, Methods Carbohydr. Chem. (1963) 2, 368–373, and references cited thereinGoogle Scholar
  204. 204.
    Fischer, E.; Delbrück, K., “Über Thiophenol-glucoside”, Chem. Berichte (1909) 42, 1476–1482Google Scholar
  205. 205.
    Schneider, W.; Sepp, J.; Stiehler, O., “Synthese zweier isomerer Reihen von Alkyl-thioglucosiden”, Chem. Berichte (1918) 51, 220–234Google Scholar
  206. 206.
    Helferich, B.; Grünewald, H.; Langenhoff, F., “Notiz über die Darstellung von Methyl-α-l-thio-arabinosid und von Methyl-β-d-thio-galaktosid”, Chem. Berichte (1953) 86, 873–875CrossRefGoogle Scholar
  207. 207.
    Yde, M.; De Bruyne, C. K., “Synthesis of para-substituted phenyl 1-thio-β-D-galactopyranosides”, Carbohydr. Res. (1973) 26, 227–229CrossRefGoogle Scholar
  208. 208.
    Pedretti, V.; Veyriéres, A.; Sinaÿ, P., “A novel 13 OC silyl rearrangement in carbohydrate chemistry: Synthesis of α-D-glycopyranosyltrimethylsilanes” Tetrahedron (1990) 46,77–88CrossRefGoogle Scholar
  209. 209.
    Apparu, M.; Blanc-Muesser, M.; Defaye, J.; Driguez, H., “Stereoselective syntheses of O- and S-nitrophenyl glycosides. Part III. Syntheses in the α-D-galactopyranose and α-maltose series”, Can. J. Chem. (1981) 59, 314–320CrossRefGoogle Scholar
  210. 210.
    Tropper, F. D.; Andersson, F. O.; Grand-Maître, C.; Roy, R., “Stereospecific Synthesis of 1,2-trans-1-Phenylthio-β-D-Disaccharides Under Phase Transfer Catalysis”, Synthesis (1991) 734–736Google Scholar
  211. 211.
    Horton, D., “1-Thio-D-glucose”, Methods Carbohydr. Chem. (1963) 2, 433–437, and references cited thereinGoogle Scholar
  212. 212.
    Pacsu, E., “Preparation of Glycosides from Dithioacetals”, Methods Carbohydr. Chem. (1963) 2, 354–367, and references thereinGoogle Scholar
  213. 213.
    Cerny, M.; Zachystalova, D.; Pacak, J., “Preparation of acetylated aromatic 1-thio-β-D-glucopyranosides from 2,3,4,6-tetra-O-acetyl-1-thio-β-D-glucopyranose and diazonium salts”, Coll. Czech. Chem. Commun. (1961) 26, 2206–2211Google Scholar
  214. 214.
    Sakata, M.; Haga, M.; Tejima, S., “Synthesis and reactions of glycosyl methyl- and benzyl-xanthates: A facile synthesis of 1-thioglycosides”, Carbohydr. Res. (1970) 13, 379–390CrossRefGoogle Scholar
  215. 215.
    Tropper, F. D.; Andersson, F. O.; Cao, S.; Roy, R., “Synthesis of S-glycosyl xanthates by phase transfer catalyzed substitution of glycosyl halides”, J. Carbohydr. Chem. (1992) 11, 741–750CrossRefGoogle Scholar
  216. 216.
    Szeja, W.; Bogusiak, J., “Synthesis of glycosyl xanthates from reducing sugar derivatives under phase-transfer conditions”, Carbohydr. Res. (1987) 170, 235–239CrossRefGoogle Scholar
  217. 217.
    Pakulski, Z.; Pierozynski, D.; Zamojski, A., “Reaction of sugar thiocyanates with Grignard reagents. New synthesis of thioglycosides”, Tetrahedron (1994) 50, 2975–2992CrossRefGoogle Scholar
  218. 218.
    Lacombe, J. M.; Rakotomanomana, N.; Pavia, A. A., “Free-radical addition of 1-thiosugars to alkenes a new general approach to the synthesis of 1-thioglycosides”, Tetrahedron Lett. (1988) 29, 4293–4296CrossRefGoogle Scholar
  219. 219.
    Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J., “Glycosylation of unreactive substrates”, J. Am. Chem. Soc. (1989) 111, 6881–6882CrossRefGoogle Scholar
  220. 220.
    Yan, L.; Kahne, D., “Generalizing Glycosylation: Synthesis of the Blood Group Antigens Le a , Le b , and Le x Using a Standard Set of Reaction Conditions”, J. Am. Chem. Soc. (1996) 118, 9239–9248CrossRefGoogle Scholar
  221. 221.
    Nicolaou, K. C.; Winssinger, N.; Pastor, J.; DeRoose, F., “A General and Highly Efficient Solid Phase Synthesis of Oligosaccharides. Total Synthesis of a Heptasaccharide Phytoalexin Elicitor (HPE)”, J. Am. Chem. Soc. (1997) 119, 449–450CrossRefGoogle Scholar
  222. 222.
    Fréchet, J. M. J.; De Smet, M. D.; Farral, M. J., “Functionalization of crosslinked polystyrene resins. 2. Preparation of nucleophilic resins containing hydroxyl or thiol functionalities”, Polymer (1979) 20, 675–680CrossRefGoogle Scholar
  223. 223.
    Plante, O. J.; Palmacci, E. R.; Seeberger, P. H., “Development of an Automated Oligosaccharide Synthesizer”, Adv. Carbohydr. Chem. Biochem. (2003) 58, 35–54CrossRefGoogle Scholar
  224. 224.
    Shafizadeh, F., “Formation and Cleavage of the Oxygen Ring in Sugars” Adv. Carbohydr. Chem. (1958) 13, 9–61Google Scholar
  225. 225.
    Capon, B.; Overend, W. G., “Constitution and Physicochemical Properties of Carbohydrates”, Adv. Carbohydr. Chem. (1960) 15, 11–51Google Scholar
  226. 226.
    BeMiller, J. N., “Acid-Catalyzed Hydrolysis of Glycosides”, Adv. Carbohydr. Chem. (1967) 22, 25–108CrossRefGoogle Scholar
  227. 227.
    Haworth, W. N., “The constitution of some carbohydrates”, Chem. Berichte 1932) 65A, 43–65Google Scholar
  228. 228.
    Heidt, L. J.; Purves, C. B., “Thermal Rates and Activation Energies for the Aqueous Acid Hydrolysis of α- and β-Methyl, Phenyl and Benzyl-D-glucopyranosides, α- and β-Methyl and β-Benzyl-D-fructopyranosides, and α-Methyl-D-fructofuranoside”, J. Am. Chem. Soc. (1944) 66, 1385–1389CrossRefGoogle Scholar
  229. 229.
    Isbell, H. S.; Frush, H. L., α- and β-Methyl lyxosides, mannosides, gulosides and heptosides of like configuration”, J. Res. Nat. Bur. Stand. (1940) 24, 125–151Google Scholar
  230. 230.
    Nakano, J.; Rånby, B. G., “Acid hydrolysis of methyl glucosides and methyl glucuronosides”, Svensk Papperstid. (1962) 65, 29–33Google Scholar
  231. 231.
    Overend, W. G.; Rees, C. W.; Seqeuira, J. S., “Reactions at position 1 of carbohydrates. Part III. The acid-catalysed hydrolysis of glycosides”, J. Chem. Soc. (1962) 3429–3440Google Scholar
  232. 232.
    Haworth, W. N.; Hirst, E. L., “The structure of carbohydrates and their optical rotatory power. Part I. General introduction”, J. Chem. Soc. (1930) 2615–2635Google Scholar
  233. 233.
    Day, J. N. E.; Ingold, C. K., “Mechanism and kinetics of carboxylic ester hydrolysis and carboxyl esterification”, Trans. Faraday Soc. (1941) 37, 686–705CrossRefGoogle Scholar
  234. 234.
    Bunton, C. A.; Lewis, T. A.; Llewellyn, D. R.; Vernon, C. A., “Mechanisms of reactions in the sugar series. Part I. The acid-catalysed hydrolysis of α- and β-methyl and α- and β-phenyl D-glucopyranosides”, J. Chem. Soc. (1955) 4419–4423Google Scholar
  235. 235.
    McIntyre, D.; Long, F. A., “Acid-catalyzed Hydrolysis of Methylal. I. Influence of Strong Acids and Correlation with Hammett Acidity Function”, J. Am. Chem. Soc. (1954) 76, 3240–3242CrossRefGoogle Scholar
  236. 236.
    Buncell, E.; Bradley, P. R., “The acid-catalyzed hydrolysis of methyl 2-chloro-2-deoxy-β-D-glucopyranoside”, Can. J. Chem. (1967) 45, 515–519CrossRefGoogle Scholar
  237. 237.
    Marshall, R. D., “Rates of Acid Hydrolysis of 2-substituted Methyl Glucopyranosides”, Nature (1963) 199, 998–999CrossRefGoogle Scholar
  238. 238.
    Armour, C.; Bunton, C. A.; Patai, S.; Selman, L. H.; Vernon, C. A., “Mechanisms of reactions in the sugar series. Part III. The acid-catalysed hydrolysis of t-butyl β-D-glucopyranoside and other glycosides”, J. Chem. Soc. (1961) 412–416Google Scholar
  239. 239.
    Moelwyn-Hughes, E. A., “The kinetics of the hydrolysis of certain glucosides, part III.; β-methylglucoside, cellobiose, melibiose, and turanose”, Trans. Faraday Soc. (1929) 25, 503–520CrossRefGoogle Scholar
  240. 240.
    Moggridge, R. C. G.; Neuberger, A., “Methylglucosaminide: Its Structure, and the Kinetics of its Hydrolysis by Acids”, J. Chem. Soc. (1938) 745–750Google Scholar
  241. 241.
    Foster, A. B.; Horton, D.; Stacey, M., “Amino-sugars and Related Compounds. Part II. Observations on the Acidic Hydrolysis of Derivatives of 2-Amino-2-deoxy-D-glucose (D-Glucosamine)”, J. Chem. Soc. (1957) 81–85Google Scholar
  242. 242.
    Timell, T. E.; Enterman, W.; Spencer, F.; Soltes, E. J., “The Acid hydrolysis of glycosides. II. Effect of substituents at C-5”, Can. J. Chem. (1965) 43, 2296–2305CrossRefGoogle Scholar
  243. 243.
    Richards, G. N., “Hydrolysis of glycosides and cyclic acetal”, Chem. Ind. (London) (1955) 228Google Scholar
  244. 244.
    Dee, K. K.; Timell, T. E., “The acid hydrolysis of glycosides: III. Hydrolysis of O-methylated glucosides and disaccharides”, Carbohydr. Res. (1967) 4, 72–77CrossRefGoogle Scholar
  245. 245.
    Riiber, C. N.; Sørensen, N. A., “Anomeric sugars”, Kgl. Norske Videnskab. Sel skabs, Skrifter (1938), (No. 1), 38 ppGoogle Scholar
  246. 246.
    Moelwyn-Hughes, E. A., “The kinetics of the hydrolysis of certain glucosides (Salicin, arbutin and phloridzin)”, Trans. Faraday Soc. (1928) 24, 309–321;CrossRefGoogle Scholar
  247. 247.
    Moelwyn-Hughes, E. A., “The kinetics of the hydrolysis of certain glucosides, part II.:-Trehalose, a methylglucoside and tetramethyl-a-methylglucoside”, Trans. Faraday Soc., (1929) 25, 81–92CrossRefGoogle Scholar
  248. 248.
    Nath, R. L.; Rydon, H. N., “The influence of structure on the hydrolysis of substituted phenyl β-d-glucosides by emulsin”, Biochem. J. (1954) 57, 1–10Google Scholar
  249. 249.
    Hall, A. N.; Hollingshead, S.; Rydon, H. N., “The acid and alkaline hydrolysis of some substituted phenyl α-D-glucosides”, J. Chem. Soc. (1961) 4290–4295Google Scholar
  250. 250.
    Banks, B. E. C.; Meinwald, Y.; Rhind-Tutt, A. J.; Sheft, I.; Vernon, C. A., “Mechanism of reactions in the sugar series. Part IV. The structure of the carbonium ions formed in the acid-catalysed solvolysis of glucopyranosides”, J. Chem. Soc. (1961) 3240–3246Google Scholar
  251. 251.
    Timell, T. E., “The Acid Hydrolysis of Glycosides: I. General Conditions and the Effect of the Nature of the Aglycone”, Canad. J. Chem. (1964) 42, 1456–1472CrossRefGoogle Scholar
  252. 252.
    Augestad, I.; Berner, E.; Weigner, E., “Chromatographic separations of anomeric glycosides”, Chem. Ind. (London) (1953) 376–377Google Scholar
  253. 253.
    Augestad, I.; Berner, E., “Chromatographic separation of anomeric glycosides. II. New crystalline methylfuranosides of galactose, arabinose, and xylose”, Acta Chem Scand. (1954) 8, 251–256CrossRefGoogle Scholar
  254. 254.
    Augestad, I.; Berner, E., “Chromatographic separation of anomeric glycosides. III. Crystalline methylfuranosides of L-fucose, D-ribose, and L-rhamnose”, Acta Chem. Scand. (1956) 10, 911–916CrossRefGoogle Scholar
  255. 255.
    Blom, J., “Ein Beitrag zur Kenntnis der Konfiguration und der Konformation ano merer Aldosen und deren Glykoside”, Acta Chem. Scand. (1961) 15, 1667–1675CrossRefGoogle Scholar
  256. 256.
    Krieble, V. K., “Activities and the Hydrolysis of Sucrose with Concentrated Ac ids”, J. Am. Chem. Soc. (1935) 57, 15–19CrossRefGoogle Scholar
  257. 257.
    Krieble, V. K.; Holst, K. A., “Amide hydrolysis with high concentrations of mineral acids”, J. Am. Chem. Soc. (1938) 60, 2976–2980CrossRefGoogle Scholar
  258. 258.
    Leiniger, P. M.; Kilpatrick, M., “The Inversion of Sucrose”, J. Am. Chem. Soc. (1938) 60, 2891–2899CrossRefGoogle Scholar
  259. 259.
    Moelwyn-Hughes, E. A., “The temperature coefficient of the inversion of cane sugar”, Z. Physik. Chem. (1934) B26 281–287Google Scholar
  260. 260.
    Heidt, L. J.; Purves, C. B., “The Unimolecular Rates of Hydrolysis of 0.01 Molar Methyl- and Benzylfructofuranosides and -Pyranosides and of Sucrose in 0.00965 Molar Hydrochloric Acid at 20 to 60°”, J. Am. Chem. Soc. (1938) 60, 1206–1210CrossRefGoogle Scholar
  261. 261.
    Capon, B.; Thacker, D., “The mechanism of the hydrolysis of glycofuranosides”, J. Chem. Soc. (B), Phys. Org. (1967) 185–189Google Scholar
  262. 262.
    Ceder, O., “A kinetic study of the acid hydrolysis of cyclic acetals”, Arkiv. Kemi (1954) 6, 523–535Google Scholar
  263. 263.
    Salomaa, P.; Kankaanperä, A., “Hydrolysis of 1,3-dioxolane and its alkyl-substituted derivatives. I. Structural factors influencing the rates of hydrolysis of a series of methyl-substituted dioxolanes”, Acta Chem. Scand. (1961) 15, 871–878CrossRefGoogle Scholar
  264. 264.
    Fife, T. H.; Jao, L. K., “Substituent Effects in Acetal Hydrolysis”, J. Org. Chem. (1965) 30, 1492–1495CrossRefGoogle Scholar
  265. 265.
    Fife, T. H.; Hagopian, L., “Steric Effects in Ketal Hydrolysis”, J. Org. Chem. (1966) 31, 1772–1775CrossRefGoogle Scholar
  266. 266.
    van Eikeren, P., “Models for Glycoside Hydrolysis. Synthesis and Hydrolytic Studies of the Anomers of a Conformationally Rigid Acetal”, J. Org. Chem. (1980) 45, 4641–4645CrossRefGoogle Scholar
  267. 267.
    Deslongchamps, P.; Li, S.; Dory, Y. L., “Hydrolysis of α- and β-Glycosides. New Experimental Data and Modeling of Reaction Pathways”, Org. Lett. (2004) 6, 505–508CrossRefGoogle Scholar
  268. 268.
    Deslongchamps, P., Stereoelectronic Effects in Organic Chemistry, Pergamon Press, Oxford, England, 1983;Google Scholar
  269. 269.
    Kirby, A. J., “Stereoelectronic effects on acetal hydrolysis”, Acc. Chem. Res. (1985) 17, 305CrossRefGoogle Scholar
  270. 270.
    Kirby, A. J., The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer-Verlag, New York, 1983Google Scholar
  271. 271.
    Cordes, E. H.; Bull, H. G., Transition State in Biochemical Processes, Gandour, D. R.; Showen, R. L. (Eds.), Plenum Press, New York, 1978Google Scholar
  272. 272.
    BeMiller, J. N.; Doyle, E. R., “Acid-catalyzed hydrolysis of alkyl α-D- glucopyranosides”, Carbohydr. Res. (1971) 20, 23–30CrossRefGoogle Scholar
  273. 273.
    Li, S.; Kirby, A. J.; Deslongchamps, P., “First experimental evidence for a synperiplanar stereoelectronic effect in the acid hydrolysis of acetal”, Tetrahedron Lett. (1993) 34, 7757–7758CrossRefGoogle Scholar
  274. 274.
    Ratcliffe, A. J.; Mootoo, D. R.; Webster, C.; Fraser-Reid, B., “Concerning the anti-periplanar lone pair hypothesis: oxidative hydrolysis of conformationally restrained 4-pentenyl glycosides”, J. Am. Chem. Soc. (1989) 111, 7661–7662CrossRefGoogle Scholar
  275. 275.
    Gupta, R. B.; Franck, R. W., “Direct experimental evidence for cleavage of both exo- and endo-cyclic carbon-oxygen bonds in the acid-catalyzed reaction of alkyl β-tetrahydropyranyl acetals”, J. Am. Chem. Soc. (1987) 109, 6554–6556CrossRefGoogle Scholar
  276. 276.
    Deslongchamps, P.; Dory, Y. L.; Li, S., “1994 R.U. Lemieux Award Lecture Hydrolysis of acetals and ketals. Position of transition states along the reaction coordinates, and stereoelectronic effects”, Can. J. Chem. (1994) 72, 2021–2027CrossRefGoogle Scholar
  277. 277.
    Ishij, T.; Ishizu, A.; Nakano, J., “Acid hydrolysis of methyl chlorodeoxyglycosides”, Carbohydr. Res. (1976) 48, 33–40CrossRefGoogle Scholar
  278. 278.
    Liras, J. L.; Anslyn, E. V., “Exocyclic and Endocyclic Cleavage of Pyranosides in Both Methanol and Water Detected by a Novel Probe”, J. Am. Chem. Soc. (1994) 116,2645–2646CrossRefGoogle Scholar
  279. 279.
    Frank, R. W., “The mechanism of β-glycosidases: A reassessment of some seminal papers”, Bioorg. Chem. (1992) 20, 77–88CrossRefGoogle Scholar
  280. 280.
    Nerinckx, W.; Desmet, T.; Claessens, M., “Itineraries of enzymatically and non-enzymatically catalyzed substitutions at O-glycopyranosidic bonds”, ARKIVOC (2006) XIII, 90–116Google Scholar
  281. 281.
    Sinnot, M. L.; Jencks, W. P., “Solvolysis of D-Glucopyranosyl Derivatives in Mixtures of Ethanol and 2, 2, 2-Trifluoroethanol”, J. Am. Chem Soc. (1980) 102, 2026–2032CrossRefGoogle Scholar
  282. 282.
    Amyes, T. L.; Jenks, W. P., “Concerted Bimolecular Substitution Reactions of Acetal Derivatives of Propionaldehyde and Benzaldehyde”, J. Am. Chem. Soc. (1989) 111,7900–7909CrossRefGoogle Scholar
  283. 283.
    Kurzynski, M., Enzymic catalysis as a process controlled by protein conformational relaxation”, FEBS Lett. (1993), 328, 221–224CrossRefGoogle Scholar
  284. 284.
    Huang, X.; Tanaka, K. S. E.; Bennet, A. J., “ Glucosidase-Catalyzed Hydrolysis of α-D-Glucopyranosyl Pyridinium Salts: Kinetic Evidence for Nucleophilic Involvement at the Glucosidation Transition State”, J. Am. Chem. Soc. (1997) 119, 11147–11154CrossRefGoogle Scholar
  285. 285.
    Berti, P. J.; Tanaka, K. SA. E., “Transition state analysis using multiple kinetic isotope effects: mechanisms of enzymatic and non- enzymatic glycoside hydrolysis and transfer”, Adv. Phys. Org. Chem. (2002) 37, 239–314Google Scholar
  286. 286.
    Vocadlo, D. J.; Wicki, J.; Rupitz, K.; Withers, S. G., “Mechanism of Thermoanaerobacterium saccharolyticum -Xylosidase: Kinetic Studies”, Biochemistry (2002) 41, 9727–9735CrossRefGoogle Scholar
  287. 287.
    Lorthiois, E.; Meyyappan, M.; Vasela, A., β -Glycosidase inhibitors mimicking the pyranoside boat conformation”, Chem. Commun. (2000) 1829–1830Google Scholar
  288. 288.
    Murray, T. F.; Kenyon, W. O., “The Rates of Formation of Sulfoaliphatic Acids”, J. Am. Chem. Soc. (1940) 62, 1230–1233CrossRefGoogle Scholar
  289. 289.
    Jeffery, E. A.; Satchell, D. P. N., “The mechanism of sulphoacetic acid formation in the system H 2 SO 4 –Ac 2 O–AcOH”, J. Chem. Soc. (1962) 1913–1917Google Scholar
  290. 290.
    Germain, A.; Commeyras, A., “Mechanism of the C-acylation of aromatic and ethylenic compounds. XV. Kinetic study of the formation of acetylium ion in acetic anhydride solutions in the presence of trifluoromethanesulfonic and fluorosulfonic acids”, Bull Soc. Chim. (France) (1973) 2532–2537Google Scholar
  291. 291.
    Germain, A.; Commeyras, A.; Casadevall, A., “Mechanism of the C-acylation of aromatic and ethylenic compounds. XVI. Kinetic study of the acetylation of aromatic compounds by acetic anhydride in the presence of strongly protonating ac ids”, Bull. Soc. Chim. (France) (1973) 2537–2543Google Scholar
  292. 292.
    Dasgupta, F.; Singh, P. P.; Srivastava, H. C., “Acetylation of carbohydrates using ferric chloride in acetic anhydride”, Carbohydr. Res. (1980) 80, 346–349Google Scholar
  293. 293.
    Dasgupta, F.; Singh, P.; Srivastava, H. C., “Use of ferric chloride in carbohydrate reactions. Part V. Acetolysis of methyl hexopyranosides using ferric chloride in acetic anhydride”, Indian J. Chem. (1988) 27B, 527–529Google Scholar
  294. 294.
    Guthrie, R. D.; McCarthy, J. F., “Acetolysis”, Advan. Carbohydr. Chem. (1967) 22, 11–23Google Scholar
  295. 295.
    Zaccari, d. G.; Snyder, J. P.; Peralta, J. E; Taurian, O. E.; Coutreras, R. H.; Barone, V., “Natural J Coupling (NJC) analysis of the electron lone pair effect on NMR couplings. Part 2. The anomeric effects on 1 J (C, H) couplings and its dependence on solvent”, Mol. Phys. (2002) 100, 705–715CrossRefGoogle Scholar
  296. 296.
    Pinto, B. M.; Johnston, B. D.; Nagelkerke, R., “Solvent and temperature dependence of the anomeric effect in 2[(4-methoxyphenyl)seleno]-1, 3-dithianes. Dominance of the orbital interaction component”, J. Org. Chem. (1988) 53, 5668–5672CrossRefGoogle Scholar
  297. 297.
    Franks, F.; Lillford, P. J.; Robinson, G., “Isomeric equilibration of monosaccharides in solution: influence of solvent and temperature”, J. Chem. Soc. Faraday Trans 1 (1989) 85, 2417–2426Google Scholar
  298. 298.
    Paulsen, H.; Friedmann, M., “Conformational analysis. I. Dependence of the syn-1,3-diaxial interaction on the substituents and solvents. Conformational equilibria of D-idopyranose derivatives”, Chem. Berichte (1972) 105, 705–717CrossRefGoogle Scholar
  299. 299.
    Bailey, W. F.; Eliel, E. L., “Conformational Analysis. XXIX. 2-Substituted and 2, 3-disubstituted 1, 3-dioxanes. Generalized and reverse anomeric effects”, J. Am. Chem. Soc. (1974) 96, 1798–1806CrossRefGoogle Scholar
  300. 300.
    McPhail, D. R.; Lee, J. R.; Fraser-Reid, B., “Exo and endo activation in glycoside cleavage: acetolysis of methyl alpha- and beta-glucopyranosides”, J. Am. Chem. Soc. (1992) 114, 1905–1906CrossRefGoogle Scholar
  301. 301.
    Lemieux, R. U., “Some Implications in Carbohydrate Chemistry of Theories Relating to the Mechanisms of Replacement Reactions”, Adv. Carbohydr. Chem. (1954) 9, 1–57CrossRefGoogle Scholar
  302. 302.
    Capon, B., “Mechanism in carbohydrate chemistry”, Chem. Rev. (1969) 69, 407–498CrossRefGoogle Scholar
  303. 303.
    Lindberg, B., “Action of strong acids on acetylated glucosides. III. Strong acids and aliphatic glucoside tetraacetates in acetic anhydride-acetic acid solutions”, Acta Chem. Scand. (1949) 3, 1153–1169CrossRefGoogle Scholar
  304. 304.
    Asp, L.; Lindberg, B., “Action of strong acids on acetylated glycosides. VII. Trans-glycosidation of xylosides”, Acta Chem Scand. (1950) 4, 1446–1449CrossRefGoogle Scholar
  305. 305.
    Lonnberg, H.; Kankaanperä, A.; Haapakka, K., “The acid-catalyzed hydrolysis of β-D-xylofuranosides”, Carbohydr. Res. (1977) 56, 277–287CrossRefGoogle Scholar
  306. 306.
    Lonnberg, H.; Kulonpaa, A., “Mechanisms for the acid-catalyzed hydrolysis of some alkyl aldofuranosides with the trans-1,2-configuration”, Acta. Chem. Scand. (1977) A31, 306–312CrossRefGoogle Scholar
  307. 307.
    Lemieux, R. U. “Rearrangements and Isomerizations in Carbohydrate Chemistry”. in Molecular Rearrangements, Part Two; de Mayo, P., Ed.; Interscience, New York, 1964; p. 709–769Google Scholar
  308. 309.
    Altona, C., Ph.D., Thesis, University of London, London, England, 1964Google Scholar
  309. 309.
    Lemieux, R. U., Personal communication to H. Booth in 1983, as quoted by Booth, H.; Khedhair, K. A. in “Endo-Anomeric and exo-anomeric effects in 2-substituted tetrahydropyrans”, J. Chem. Soc. Chem. Commun. (1985) 467–468, Reference 13Google Scholar
  310. 310.
    Praly, J.-P.; Lemieux, R. U., “Influence of solvent on the magnitude of the anomeric effect”, Can. J. Chem. (1987) 65, 213–223CrossRefGoogle Scholar
  311. 311.
    Miljkovic, M.; Habash-Marino, M., “Acetolysis of permethylated O-alkyl glycopyranosides: kinetics and mechanism”, J. Org. Chem. (1983) 48, 855–860CrossRefGoogle Scholar
  312. 312.
    Miljkovic, M.; Yeagley, D.; Deslongchamps, P.; Dory, Y. L., “Experimental and Theoretical Evidence of Through-Space Electrostatic Stabilization of the Incipient Oxocarbenium Ion by an Axially Oriented Electronegative Substituent During Glycopyranoside Acetolysis”, J. Org. Chem. (1997) 62, 7597–7604CrossRefGoogle Scholar
  313. 313.
    Tvaroška, I.; Bleha, T., “Anomeric and Exo-Anomeric Effects in Carbohydrate Chemistry”, Adv. Carbohydr. Chem. Biochem. (1989) 47, 45–123CrossRefGoogle Scholar
  314. 314.
    Fuchs, B.; Ellencweig, A.; Tartakovsky, E.; Aped, P., “Solvent Polarity and the Anomeric Effect”, Angew. Chem. Int. Eng. (1986) 25, 287–289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State University, Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations