Advertisement

Carbohydrates pp 291-321 | Cite as

Addition of Nucleophiles to Glycopyranosiduloses

  • Momcilo Miljković
Chapter

Abstract

Two distinct types of interactions control the stereochemistry of nucleophilic addition to glycopyranosiduloses. One is the classical nonbonded steric interaction and torsional strain between the incoming nucleophile and substituents on a pyranoside ring. These types of interactions are typical for all polysubstituted six-membered cyclic compounds. The second type of interaction is the electrostatic (dipolar) or electronic interaction between the incoming nucleophile and the glycosidic and/or the ring oxygen and is typical for carbohydrates. We will illustrate these by examining the stereochemistry of addition of various nucleophiles to the carbonyl carbon of glycopyranosid-2-, 3-, and 4-ulose of both α- and β-anomers.

Keywords

Carbonyl Carbon Metal Hydride Oxirane Ring Torsional Strain Ethyl Bromoacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Miljkovic, M.; Gligorijevic, M.; Miljkovic, D., “Steric and Electrostatic Interactions in Reactions of Carbohydrates. II. Stereochemistry of Addition Reactions to the Carbonyl Group of Glycopyranosiduloses. Synthesis of Methyl 4, 6-O-Benzylidene-3-O- methyl-β-D-Mannopyranoside”, J. Org. Chem. (1974) 39, 2118–2120CrossRefGoogle Scholar
  2. 2.
    House, H. O., Modern Synthetic Reactions, 2nd Ed. (1972), W. A. Benjamin, Menlo Park, Calif., p. 56Google Scholar
  3. 3.
    Shaban, M. A. E.; Jeanloz, R. W., “Synthesis of 2-acetamido-2-deoxy-3-O-® -D- mannopyranosyl-D-glucose”, Carbohydr. Res. (1976) 52, 103–114CrossRefGoogle Scholar
  4. 4.
    Shaban, M. A. E.; Jeanloz, R. W., “The synthesis of 2-acetamido-2-deoxy-4-O- ® -D- mannopyranosyl-D-glucose”, Carbohydr. Res. (1976) 52, 115–127CrossRefGoogle Scholar
  5. 5.
    Tsuda, Y.; Hanajima, M.; Matsuhira, N.; Okuno, Y.; Kanemitsu, K., “Utilization of sugars in organic synthesis. XXI. Regioselective mono-oxidation of non-protected carbohydrates by brominolysis of the tin intermediates”, Chem. Pharm. Bull. Japan (1989) 37, 2344–2350Google Scholar
  6. 6.
    Liu, H. M.; Sato, Y.; Tsuda, Y.,“Utilization of sugars in organic synthesis. XXVII. Chemistry of oxo-sugars. (2). Regio- and stereo-selective synthesis of methyl D- hexopyranosiduloses and identification of their forms existing in solutions”, Chem. Pharm. Bull. Japan (1993) 41(3), 491–501Google Scholar
  7. 7.
    Ekborg, G.; Lindberg, B.; Lönngren, J., “Synthesis of β-D-mannopyranosides”, Acta Chem. Scand. (1972) 26, 3287–3292CrossRefGoogle Scholar
  8. 8.
    Miljkovic, M.; Glisin, Dj., “Synthesis of macrolide antibiotics. II. Stereoselective syn thesis of methyl 4,6-O-benzylidene-2-deoxy-2-C,3-O-dimethyl- α -D-glucopyranoside. Hydrogenation of the C-2 methylene group of methyl 4,6-O-benzylidene-2-deoxy-2-C- methylene-3-O-methyl- α - and - β -D-arabinohexopyranoside” J. Org. Chem. (1975) 40, 3357–3360CrossRefGoogle Scholar
  9. 9.
    Hudson, C. S., “Apiose and the Glycosides of the Parsley Plant”, Adv. Carbohydr. Chem.(1949) 4, 57–74Google Scholar
  10. 10.
    Shafizadeh, F., “Branched-Chain Sugars of Natural Occurrence”, Adv. Carbohydr. Chem. (1956) 11, 263–283Google Scholar
  11. 11.
    Grisebach, H.; Schmid, R., “Chemistry and Biochemistry of Branched-Chain Sugars”, Angew. Chem., Int. Ed. Eng.(1972) 11, 159–173CrossRefGoogle Scholar
  12. 12.
    Yoshimura, J., “Synthesis of Branched-Chain Sugars”, Advan. Carbohydr. Chem. (1984) 42, 69–134Google Scholar
  13. 13.
    Cahn, R. S.; Ingold, C. K.; Prelog, V., “Specification of asymmetric configuration in organic chemistry”, Experientia (1956) 12, 81–94CrossRefGoogle Scholar
  14. 14.
    Ferrier, R. J.; Overend, W. G.; Rafferty, G. A.; Wall, H. M.; Williams, N. R., “De-termination of the configuration of branched-chain sugars”, Proc. Chem. Soc. (London) (1963), 133Google Scholar
  15. 15.
    Hofheinz, W.; Grisebach, H.; Friebolin, H., “Zur biogenese der makrolide—VIII: Die stereochemie der mycarose und cladinose”, Tetrahedron (1962) 18, 1265–1274CrossRefGoogle Scholar
  16. 16.
    Burton, J. S.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part III. The introduction of branching into methyl 3,4-O-isopropylidene- β -L-arabinoside and the synthesis of L-hamamelose”, J. Chem. Soc. (1965) 3433–3445Google Scholar
  17. 17.
    Keller-Schierlein, W.; Roncari, G., “Stoffwechselprodukte von Actinomyceten. 33. Mitteilung. Hydrolyseprodukte von Lankamycin: Lankavose und 4-O-Acetyl- arcanose”, Helv. Chim. Acta (1962) 45, 138–152CrossRefGoogle Scholar
  18. 18.
    Keller-Schierlein, W.; Roncari, G., “Stoffwechselprodukte von Mikroorganismen 46. Mitteilung Die Konstitution des Lankamycins”, Helv. Chim. Acta (1964) 47 78–103CrossRefGoogle Scholar
  19. 19.
    Lemal, D. M.; Pacht, P. D.; Woodward, R. B., “The synthesis of L-(—)-mycarose and L-(—)-cladinose”, Tetrahedron (1962) 18, 1275–1293CrossRefGoogle Scholar
  20. 20.
    Roncari, G.; Keller-Schierlein, W., “Stoffwechselprodukte von Mikroorganismen. 50. Mitteilung. Die Konfiguration der Arcanose”, Helv. Chim. Acta (1966) 49, 705–711CrossRefGoogle Scholar
  21. 21.
    Satoh, C.; Kiyomoto, A.; Okuda, T., Nitrogen-containing carbohydrate derivatives: Part IV. Studies on the optical rotatory dispersion and circular dichroism of Carbohydrate C-nitro alcohols”, Carbohydr. Res. (1967) 5, 140–148CrossRefGoogle Scholar
  22. 22.
    Rosenthal, A.; Ong, K.-S., “Branched-chain aminodeoxy sugars. Methyl 3-C- aminomethyl-2-deoxy- α -D-ribo-hexopyranoside and methyl 3-C-aminomethyl-2- deoxy- α -D-arabino hexopyranoside”, Can. J. Chem. (1970) 48, 3034–3038CrossRefGoogle Scholar
  23. 23.
    Rosenthal, A.; Ong, K.-S.; Baker, D., “Synthesis of branched-chain nitro and amino sugars by the nitromethane route”, Carbohydr. Res. (1970) 13, 113–125CrossRefGoogle Scholar
  24. 24.
    Albrecht, H. P.; Moffatt, J. G., “Synthesis of a branched chain aminosugar nucleoside”, Tetrahedron Lett. (1970) 11, 1063–1066Google Scholar
  25. 25.
    Gero, S. D.; Horton, D.; Sepulchre, A. M.; Wander, J. D., “Determination of the configurations of tertiary alcoholic centers in branched-chain carbohydrate derivatives: PMR spectroscopy with a lanthanide shift-reagent”, Tetrahedron (1973) 29, 2963–2972CrossRefGoogle Scholar
  26. 26.
    Dalling, D. K.; Grant, D. M., “Carbon-13 magnetic resonance. IX. Methylcyclohexanes”, J. Am. Chem. Soc. (1967) 89, 6612–6622CrossRefGoogle Scholar
  27. 27.
    Anet, F. A. L.; Bradley, C. H.; Buchanan, G. W., “Direct detection of the axial con- former of methylcyclohexane by 63.1 MHz carbon-13 nuclear magnetic resonance at low temperatures”, J. Am. Chem. Soc. (1971) 93, 258–259CrossRefGoogle Scholar
  28. 28.
    Stothers, J. B., “Carbon-13 NMR Spectroscopy”, Academic Press, New York (1972), pp. 402 and 426Google Scholar
  29. 29.
    Miljkovic, M.; Gligorijevic, M.; Satoh, T.; Pitcher, R. G., “Carbon-13 Nuclear Magnetic Resonance Spectra of Branched-Chain Sugars. Configuratinal Assignment of the Branching Carbon Atom of Methyl Branched-Chain Sugars”, J. Org. Chem. (1974) 39, 3847–3850CrossRefGoogle Scholar
  30. 30.
    Miljkovic, M.; Gligorijevic, M.; Satoh, T.; Miljkovic, D., “Synthesis of Macrolide Antibiotics. I. Stereospecific Addition of Methyllithium and Methylmagnesium Iodide to Methyl α -D-xylo-Hexopyranosid-4-ulose Derivatives. Determination of the Configuration at the Branching Carbon Atom by Carbon-13 Nuclear Magnetic Resonance Spectroscopy”, J. Org. Chem. (1974) 39, 1379–1384CrossRefGoogle Scholar
  31. 31.
    Inch, T. D., “Asymmetric synthesis: Part I. A stereoselective synthesis of benzylic centres. Derivatives of 5-C-phenyl-D-gluco-pentose and 5-C-phenyl-L-ido- pentose”, Carbohydr. Res. (1967) 5, 45–52CrossRefGoogle Scholar
  32. 32.
    Guillerm-dron, D.; Capmau, M.-L.; Chodkiewicz, W.“ Assistance du groupe méthoxyle en α d’un carbonyle dans le cours stérique de l’addition d’or- ganométalliques insaturés”, Tetrahedron Lett. (1972) 13, 37–40Google Scholar
  33. 33.
    Cram, D. J.; Kopecky, K. R., “Studies in Stereochemistry. XXX. Models for Steric Control of Asymmetric Induction”, J. Am. Chem. Soc. (1959) 81, 2748–2755Google Scholar
  34. 34.
    Yoshimura, J.; Ohgo, Y.; Ajisaka, K.; Konda, Y.“ Asymmetric reactions. VI. Stereselectivities in phenyllithium and Grignard reactions with tetrahydrofurfural derivatives”, Bull Chem. Soc. Jap. (1972) 45, 916–921CrossRefGoogle Scholar
  35. 35.
    Corey, E. J., “The Stereochemistry of α -Haloketones. I. The Molecular Configurations of Some Monocyclic α -Halocyclanones”, J. Am. Chem. Soc.(1953) 75, 2301–2304CrossRefGoogle Scholar
  36. 36.
    Corey, E. J., “Prediction of the stereochemistry of alpha-brominated ketosteroids”, Experientia (1953) 9, 329–331CrossRefGoogle Scholar
  37. 37.
    Djerassi, C.; Geller, L. E.; Eisenbraun, E. J., “Optical rotatory dispersion studies. XXVI. α -Haloketones. (4). Demonstration of conformational mobility in α -halocyclo hexanones”, J. Org. Chem. (1960) 25, 1–6CrossRefGoogle Scholar
  38. 38.
    Allinger, N. L.; Allinger, J.; Geller, L. E.; Djerassi, C., Conformational Analysis. VI.1a Optical Rotatory Dispersion Studies. XXVII.1b Quantitative Studies of an α-Haloketones by the Rotatory Dispersion Method”, J. Org. Chem. (1960) 25, 6–12Google Scholar
  39. 39.
    Eliel, E.; Allinger, N. L.; Angyal, S. J.; Morrison, G. A., “Conformational Analysis”, Interscience, New York (1965), p. 460Google Scholar
  40. 40.
    Hanessian, S.; Rancourt, G., “Carbohydrates as chiral intermediates in organic synthesis. Two functionalized chemical precursors comprising eight of the ten chiral centers of erythronolide A”, Can. J. Chem. (1977) 55, 1111–1113CrossRefGoogle Scholar
  41. 41.
    Yoshimura, J.; Sato, K.; Kubo, K.; Hashimoto, H., “A facile synthesis of moenuronic acid derivatives”, Carbohydr. Res. (1982) 99, c1-c3CrossRefGoogle Scholar
  42. 42.
    Sato, K.; Kubo, K.; Hong, N.; Kodama, H.; Yoshimura, J., “Branched-chain sugars. XXIX. Synthesis of moenuronic acid (4-C-methyl-D-glucuronic acid)”, Bull. Chem. Soc. Japan (1982) 55, 938–942CrossRefGoogle Scholar
  43. 43.
    Sato, K.-I.; Yoshimura, J., “Stereoselectivities in the reactions of α-D-hexopyranosid- 4-uloses with diazomethane”, Carbohydr. Res. (1982) 103, 221–238CrossRefGoogle Scholar
  44. 44.
    Carey, F. A.; Hodgson, K. O., “Efficient syntheses of methyl 2-O-benzoyl-4,6-O- benzylidene- α -D-glucopyranoside and methyl 2-O-benzoyl-4,6-O-benzylidene- α-D- ribo-hexopyranosid-3-ulose”, Carbohydr. Res.(1970) 12, 463–465CrossRefGoogle Scholar
  45. 45.
    Howarth, G. B.; Szarek, W. A.; Jones, J. K. N., “The synthesis of D-arcanose”, Carbohydr. Res. (1968) 7, 284–290CrossRefGoogle Scholar
  46. 46.
    Gutsche, C. D., Org. Reactions (1954) 8, 364–429Google Scholar
  47. 47.
    Sato, K.-I.; Yoshimura, J., “Stereoselectivities in the reaction of methyl 4,6-O-benzylidene- α- and β-D-hexopyranosid-2-uloses with diazomethane”, Carbohydr. Res. (1979) 73, 75–84CrossRefGoogle Scholar
  48. 48.
    Sato, K.; Yoshimura, J., “Branched-chain sugars. XII. The stereoselectivities in the reaction of methyl 4,6-O-benzylidene- α - and - β -D-hexopyranosid-3-uloses with diazomethane”, Bull Soc. Chem. Japan (1978) 51, 2116–2121CrossRefGoogle Scholar
  49. 49.
    Corey, E. J.; Seebach, D., “Carbanionen der 1,3-Dithiane, Reagentien zur C-C- Verknüpfung durch nucleophile Substitution oder Carbonyl-Addition”, Angew. Chem., (1965) 77, 1134–1135CrossRefGoogle Scholar
  50. 50.
    Seebach, D., “Nucleophile Acylierung mit 2-Lithium-1, 3-dithianen bzw. -1,3,5- trithianen”, Synthesis (1969) 17–36Google Scholar
  51. 51.
    Wander, J. D.; Horton, D., “Dithioacetals of Sugars”, Adv. Carbohydr. Chem. Bio chem. (1976) 32, 15–123CrossRefGoogle Scholar
  52. 52.
    Flaherty, B.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. PartVII. The synthesis of D-mycarose and D-cladinose”, J. Chem. Soc. C (1966) 398–403Google Scholar
  53. 53.
    Paulsen, H.; Redlich, H., “Verzweigte Zucker, VI. Synthese der vier isomeren Methyl- D-aldgaroside. Strukturermittlung des Methylaldgarosids B aus Aldgamycin E”, Chem. Berichte(1974) 107, 2992–3012CrossRefGoogle Scholar
  54. 54.
    López, J. C.; Lameignère, E.; Burnouf, C.; de los Angeles Laborde, M.; Ghini, A. A.; Olesker, A.; Lukacs, G., “Efficient routes to pyranosidic homologated conjugated enals and dienes from monosaccharides”, Tetrahedron (1993) 49, 7701–7722CrossRefGoogle Scholar
  55. 55.
    Brimacombe, J. S.; Mather, A. M., “Branched-chain sugars. Part 7. A route to sugars with two-carbon branches using 1-methoxyvinyl-lithium”, J. Chem. Soc. Perkin I (1980), 269–272CrossRefGoogle Scholar
  56. 56.
    Brimacombe, J. S.; Mather, A. M., “A route to branched-chain sugars using methoxyvinyl-lithium”, Tetrahedron Lett. (1978) 19, 1167–1170Google Scholar
  57. 57.
    Depezay, J-C.; Merrer, Y. L., “Sucres branchés: Synthèse par aldolisation dirigée des désoxy-2 méthyléne-2C D-érythro et D-thréo pentoses”, Tetrahedron Lett. (1978) 19, 2865–2868Google Scholar
  58. 58.
    Brimacombe, J. S.; Hanna, R.; Mather, A. M.; Weakley, T. J. R., “Branched-chain sugars. Part 8. The synthesis of C-acetylpyranosides and a pillarose derivative using 1-methoxyvinyl-lithium”, J. Chem. Soc. Perkin 1 (1980) 273–276CrossRefGoogle Scholar
  59. 59.
    Depezay, J.-C.; Le Merrer, Y., “Synthèse par aldolisation dirigèe des 2-dèsoxy-2-C- mèthylene-D-erythro- ET -D-thréo-pentoses”, Carbohydr. Res. (1980) 83, 51–62Google Scholar
  60. 60.
    Reformatsky, S.“Neue Synthese zweiatomiger einbasischer Säuren aus den Ketonen” Berichte (1887) 20, 1210–1211Google Scholar
  61. 61.
    Reformatsky, S., “Action of zinc and ethyl chloroacetate on ketones and aldehydes”, J. Russ. Phys. Chem. Soc. (1890) 22, 44–64Google Scholar
  62. 62.
    Shriner, R. L., Org. React. (1942) 1, 1Google Scholar
  63. 63.
    Rathke, M. W., Org. React. (1975) 22, 423Google Scholar
  64. 64.
    Brandänge, S.; Dahlman, O.; Mörch, L., “Highly selective re-additions to a masked oxaloacetate. Absolute configurations of fluorocitric acids”, J. Am. Chem. Soc. (1981) 103, 4452–4458CrossRefGoogle Scholar
  65. 65.
    Csuk, R.; Fürstner, A.; Weidman, H., “Efficient, low temperature Reformatsky reactions of extended scope”, J. Chem. Soc. Chem. Comm. (1986) 775Google Scholar
  66. 66.
    Oehler, E.; Reininger, K.; Schmidt, U. “Einfache Synthese von alpha-Methylen- gamma-lactonen”, Angew. Chem. (1970) 82, 480–481CrossRefGoogle Scholar
  67. 67.
    Csuk, R.; Fürstner, A.; Sterk, H.; Weidmann, H., “Synthesis of carbohydrate-derived α -methylene- γ -lactones by diastereoselective, low-temperature Reformatskii-type re- actions”, J. Carbohydr. Chem. (1986) 5, 459–467CrossRefGoogle Scholar
  68. 68.
    Inch, T. D.; Lewis, G. J., “The synthesis and degradation of benzyl 4,6-O-benzylidene-2, 3-dideoxy-3-C-ethyl-2-C-hydroxymethyl- α-D-glucopyranoside and - mannopyranoside”, Carbohydr. Res. (1972) 22, 91–101CrossRefGoogle Scholar
  69. 69.
    Inch, T. D.; Lewis, G. J., “The synthesis of branched-chain, deoxy sugars by sugar epoxide-Grignard reagent reactions”. Carbohydr. Res. (1970) 15, 1–10CrossRefGoogle Scholar
  70. 70.
    Hanessian, S.; Dextraze, P., “Carbanions in Carbohydrate Chemistry: Novel Methods for Chain Extension and Branching”, Can. J. Chem. (1972) 50, 226–232CrossRefGoogle Scholar
  71. 71.
    Hanessian, S.; Dextraze, P.; Masse, R., “Regiospecific and asymmetric introduction of functionalized branching in carbohydrates”, Carbohydr. Res. (1973) 26, 264–267CrossRefGoogle Scholar
  72. 72.
    Davison, B. E.; Guthrie, R. D., “Nitrogen-containing carbohydrate derivatives. Part XXVII. Synthesis and reactions of 3-cyano-3-deoxy-glycose derivatives”, J. Chem. Soc. Perkin I (1972), 658–662CrossRefGoogle Scholar
  73. 73.
    Shmyrina, A. Ya.; Sviridov, A. F.; Chizov, O. S.; Shashkov, A. S.; Kochetkov, N. K., “Synthesis of methyl-3-deoxy-3-C-methyl-4-O-benzyl- β -L-xylopyranoside” Izv. Akad. Nauk SSSR Ser. Khim. (1977) 461–463Google Scholar
  74. 74.
    Yamamoto, H.; Sasaki, H.; Inokawa, S.,“ Reaction of lithium dimethyl cuprate with methyl 2, 3-anhydro-5-deoxy- α -D-ribofuranoside. A new, convenient route for preparation of 2,5-dideoxy-2-C-methyl-D-arabinofuranose derivatives”, Carbohydr. Res. (1982) 100, c44–c45Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State UniversityHersheyUSA

Personalised recommendations