Carbohydrates pp 245-290 | Cite as

Oxidation of Monosaccharides

  • Momčilo Miljković


Oxidation is a very important reaction in carbohydrate chemistry because it enables the synthesis of a great variety of monosaccharides and their derivatives from simple monosaccharides. As already mentioned in Chapter 5 the carbohydrates have three types of chemically distinct hydroxyl groups: (1) the primary hydroxyl groups which are always exocyclic and (2) two types of secondary hydroxyl groups: endo- and exocyclic hydroxyl groups.


Acetic Anhydride Hydrobromic Acid Chromium Trioxide Sodium Metaperiodate Pyridine Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heyens, K.; Paulsen, H, “Neuere Methoden der präparativen organischen Chemie II. 8. Selektive katalytische Oxydationen mit Edelmetall-Katalysatoren”, Angew, Chem. (1957) 69, 600–608CrossRefGoogle Scholar
  2. 2.
    Heynes, K.; Paulsen, H. , in “Newer Methods of Preparative Organic Chemistry”, Foerst, W. (Ed.), Academic Press, New York and London, 1963, Vol. 2, pp. 303–335Google Scholar
  3. 3.
    Heynes, K.; Paulsen, H.; Ruediger, G.; Weyer, J., “Configuration and conformation selectivity in catalytic oxidation with oxygen on platinum catalysts”, Fortschr. Chem. Forsch. (1969) 11,285–374CrossRefGoogle Scholar
  4. 4.
    Heynes, K.; Paulsen, H., “Selective Catalytic Oxidation of carbohydrates, Employing Platinum Catalysts”, Adv. Carbohydr. Chem. (1962) 17, 169–221Google Scholar
  5. 5.
    Busch, M., German Pat. 702, 729 (1941); Chem. Abstr. (1941) 35, 7980Google Scholar
  6. 6.
    Chas. Pfizer & Co., Inc. (J. S. Buckley sand H. D. Embree, British Pat. 786,288 AZ(1957), Chem. Abstr. (1958) 52, 8190Google Scholar
  7. 7.
    Heyns, K.; Heineman, R., “Oxidation of carbohydrates. III. Catalytic oxidation of D- glucose”, Liebigs Ann. (1947) 558, 187–192CrossRefGoogle Scholar
  8. 8.
    Heyns, K.; Stoeckel, O., “Oxidation of carbohydrates. IV. Catalytic oxidation of aldoses to aldonic acids”, Liebigs Ann. (1947) 558, 192–194CrossRefGoogle Scholar
  9. 9.
    Mehltretter, C. L.; Rist, C. E.; Alexander, B. H., U. S. Patent 2,472,168 (1949) Chem. Abstr. (1949) 43, 7506Google Scholar
  10. 10.
    Barker, S. A.; Bourne, E. J.; Stacey, M., “Synthesis of uronic acids”, Chem. Ind. (London) (1951) 970Google Scholar
  11. 11.
    Hudson, C. S.; Isbell, H. S., “Relations Between Rotatory Power and Structure in the Sugar Group. XIX. Improvements in the Preparation of Aldonic Acids”, J. Am. Chem. Soc. (1929) 51,2225–2229CrossRefGoogle Scholar
  12. 12.
    Hudson, C. S.; Isbell, H. S., Bur. Stand. J. Res. (1929) 3, 57Google Scholar
  13. 13.
    Bunzel, H. H.; Mathews, A. P., “The Mechanism of the Oxidation of Glucose by Bromine in Neutral and Acid Solution”, J. Am.; Chem. Soc. (1909) 31, 464–479CrossRefGoogle Scholar
  14. 14.
    Green, J. W. “Oxidative Reactions and Degradation”, in The Carbohydrates, Chemis- try and Biochemistry, Pigman, W. W.; Horton, D. (Eds) Volume 1B, Academic Press, New York (1980), 1101–1166Google Scholar
  15. 15.
    Isbell, H. S.; Pigman, W. W., “The oxidation of α - and β -glucose and a study of the isomeric forms of sugar in solution”, Bur. Stand. J. Research (1933) 10, 337–356Google Scholar
  16. 16.
    Isbel, H. S.; Pigman, W. W., “Bromine oxidation and mutarotation measurements of the α - and β-aldoses”, Bur. Stand. J. Res. (1937) 18, 141–194Google Scholar
  17. 17.
    Barker, I. R. L.; Overend, W. G., “Oxidation of cyclohexanol and derivatives with bromine”, Chem. Ind. (London) (1961) 558–559Google Scholar
  18. 18.
    Barker, I. R. L.; Overend, W. G.; Rees, C. W., “Reactions at position 1 of carbohydrates. Part VI. The oxidation of - and -D-glucose with bromine”, J. Chem. Soc. (1964) 3254–3262Google Scholar
  19. 19.
    Claus, C., J. Prakt. Chem. (1860) 79, 28CrossRefGoogle Scholar
  20. 20.
    Martin, F. S., “A basic trinuclear ruthenium acetate”, J. Chem. Soc. (1952) 2682–2684Google Scholar
  21. 21.
    Djerassi, C.; Engle, R. R., “Oxidations with Ruthenium Tetroxide”, J. Am. Chem. Soc. (1953) 75, 3838–3840CrossRefGoogle Scholar
  22. 22.
    Beynon, P. J.; Collins, P. M.; Overend, W. G., “The oxidation of carbohydrate derivatives with ruthenium tetroxide”, Proc. Chem. Soc. (1964) 342–343Google Scholar
  23. 23.
    Beynon, P. J.; Collins, P. M.; Doganges, P. T.; Overend, W. G., “The oxidation of carbohydrate derivatives with ruthenium tetroxide”,J. Chem. Soc. (C) (1966) 1131–1136Google Scholar
  24. 24.
    Nakata, H., “Oxidation reaction of steroid alcohols by ruthenium tetroxide”, Tetrahedron (1963) 19, 1959–1963CrossRefGoogle Scholar
  25. 25.
    Burton, J. S.; Overend, W. G.; Williams, N. R., Chem. Ind. (London) (1961) 175Google Scholar
  26. 26.
    Burton, J. S.; Overend, W. G.; Williams, N. R., “Synthesis of L- hamamelose and its epimer”, Proc. Chem. Soc. (1962)181Google Scholar
  27. 27.
    Burton, J. S.; Overend, W. G.; Williams, N., “Branched-chain Sugars. Part III. The Introduction of Branching into Methyl 3,4-O-Isopropylidene- β L-arabinoside and the Synthesis of L-Hammamelose”, J. Chem. Soc.(1965) 3433–3445Google Scholar
  28. 28.
    Nutt, R. F.; Dickinson, M. J.; Holly, F. W.; Walton, E., “Branched-chain sugar nu- cleosides. III. 3'-C-methyladenosine”, J. Org. Chem. (1968) 33, 1789–1795CrossRefGoogle Scholar
  29. 29.
    Nutt, R. F.; Arison, B.; Holly, F. W.; Walton, E. , “An Oxygen Insertion Reaction of Osuloses”, J. Am. Chem. Soc. (1965) 87, 3273–3273Google Scholar
  30. 30.
    Lawton, B. T.; Szarek, W. A.; Jones, J. K. N., “An improved procedure for oxidation of carbohydrate derivatives with ruthenium tetraoxide”, Carbohydr. Res. (1969) 10, 456–458CrossRefGoogle Scholar
  31. 31.
    Collins, P. M.; Doganges, P. T.; Kolarikol, A.; Overend, W. G., “Further studies of ruthenium tetroxide as an oxidant for carbohydrate derivatives”, Carbohydr. Res. (1969) 11, 199–206CrossRefGoogle Scholar
  32. 32.
    Baker, B. R.; Buss, D. H., “Synthetic Nucleosides. LXIII.1,2 Synthesis and Reactions of Some α-Sulfonyloxy Oxo Sugars”, J. Org. Chem. (1965) 30, 2304–2308CrossRefGoogle Scholar
  33. 33.
    Cilento, G., “The Expansion of the Sulfur Outer Shell”, Chem. Rev. (1960) 60, 147–167CrossRefGoogle Scholar
  34. 34.
    Price, C. C., “Unraveling sulfur bonds”, Chem. Eng. News (1964) 42, 58–63Google Scholar
  35. 35.
    Typke, V.; Dakkouri, M., “The force field and molecular structure of dimethyl sul- foxide from spectroscopic and gas electron diffraction data and ab initio calcula- tions”, J. Mol. Struct. (2001), 599 (1–3), 177–193CrossRefGoogle Scholar
  36. 36.
    Leake, C. D., “Dimethyl Sulfoxide”, Science (1966) 152, 1646CrossRefGoogle Scholar
  37. 37.
    Smith, S. G.; Winstein, S., “Sulfoxides as nucleophiles”, Tetrahedron (1958) 3, 317–319CrossRefGoogle Scholar
  38. 38.
    Johnson, C. R.; Philips, W. G., Abstracts, 149th National Meeting of the American Chemical Society, Detroit, Mich., April 1965, p. 46PGoogle Scholar
  39. 39.
    Johnson, C. R.; Philips, W. G., “Reactions of alkoxides with alkoxysulfonium salts”, Tetrahedron Lett. (1965) 6, 2101–2104Google Scholar
  40. 40.
    Johnson, C. R., “The Inversion of Sulfoxide Configuration”, J. Am. Chem. Soc. (1963) 85, 1020–1021CrossRefGoogle Scholar
  41. 41.
    Johnson, C. R.; Sapp, J. B., Abstracts145th National Meeting of the American Chemical Society, New York, N.Y., Sept. 1963, p. 23QGoogle Scholar
  42. 42.
    Hunsberger, I. M.; Tien, J. M., “Preparation of ethyl glyoxylate by oxidation of ethyl bromoacetate with dimethyl sulfoxide”, Chem. Ind. (London) (1959), 88–89Google Scholar
  43. 43.
    Jarreau, F. X.; Tchoubar, B.; Goutarel, R., “Reaction of 3β-(p-tolylsulfonyloxy) ster oids with dimethyl sulfoxide”, Bull. Soc. Chim. France (1962) 887–890Google Scholar
  44. 44.
    Jones, D. N.; Saeed, M. A., “The reaction between steroid sulphonate esters and di- methyl sulphoxide”, J. Chem. Soc. (1963) 4657–4663Google Scholar
  45. 45.
    Nace, H. R.; Monagle, J. J., “Reactions of Sulfoxides with Organic Halides. Prepara- tion of Aldehydes and Ketones”, J. Org. Chem. (1959) 24, 1792–1793CrossRefGoogle Scholar
  46. 46.
    Johnson, A. P.; Pelter, A., “Direct oxidation of aliphatic iodides to carbonyl com- pounds”, J. Chem. Soc. (1964) 520–522Google Scholar
  47. 47.
    Pfitzner, K. E.; Moffatt, J. G., “The Synthesis of Nucleoside-5'- Aldehydes”, J. Am. Chem. Soc. (1963) 85, 3027–3027Google Scholar
  48. 48.
    Pfitzner, K. E.; Moffatt, J. G., “Sulfoxide-Carbodiimide Reactions. I. A Facile Oxida- tion of Alcohols”, J. Am. Chem. Soc. (1965) 87, 5661–5670CrossRefGoogle Scholar
  49. 49.
    Pfitzner, K. E.; Moffatt, J. G., “Sulfoxide-Carbodiimide Reactions. II. Scope of the Oxidation Reaction”, J. Am. Chem. Soc. (1965) 87, 5670–5678CrossRefGoogle Scholar
  50. 50.
    Albright, J. D.; Goldman, L., “Dimethyl Sulfoxide-Acid Anhydride Mixtures. New Reagents for Oxidation of Alcohols”, J. Am. Chem. Soc. (1965) 87, 4214–4216CrossRefGoogle Scholar
  51. 51.
    Fenselau, A. H.; Moffatt, J. G., “Sulfoxide-Carbodiimide Reactions. III.1 Mechanism of the Oxidation Reaction”, J. Am. Chem. Soc. (1966) 88, 1762–1765CrossRefGoogle Scholar
  52. 52.
    Brimacombe, J. S.; Bryan, J. G. H.; Husain, A.; Stacey, M.; Tolley, M. S., “The oxidation of some carbohydrate derivatives, using acid anhydride-methyl sulphoxide mixtures and the pfitzner-moffatt reagent. Facile synthesis of 3-acetamido-3-deoxy-D-glucose and 3-amino-3-deoxy-D-xylose”, Carbohydr. Res. (1967) 3, 318–324CrossRefGoogle Scholar
  53. 53.
    Kampf, A.; Felsenstein, A.; Dimant, E., “Two aldehydo-D-erythrose derivatives”, Carbohydr. Res. (1968) 6, 220–228CrossRefGoogle Scholar
  54. 54.
    Horton, D.; Nakadate, M.; Tronchet, J. M. J., “1,2:3,4-di-O-isopropylidene-α-image- galacto-hexodialdo-1,5-pyranose and its 6-aldehydrol”, Carbohydr. Res. (1968) 7, 56–65CrossRefGoogle Scholar
  55. 55.
    Albright, J. D.; Goldman, L., “Indole Alkaloids. III.1 Oxidation of Secondary Alco- hols to Ketones”, J. Org. Chem. (1965) 30, 1107–1110CrossRefGoogle Scholar
  56. 56.
    Horner, L.; Kaiser, P., “Studien zum Ablauf der Substitution, XVIII Über die Einwirkung von Carbonsäureanhydriden auf Sulfoxyde”, Liebigs. Ann. (1959) 626, 19–25CrossRefGoogle Scholar
  57. 57.
    Oae, S.; Kitao, T.; Kawamura, S.; Kitaoka, Y., “Model pathways for enzymatic oxidate demethylation—I: The mechanism of the reaction of dimethyl sulphoxide with acetic anhydride”, Tetrahedron (1963) 19, 817–820CrossRefGoogle Scholar
  58. 58.
    Parham, W. E.; Groen, S. H., “Reaction of Enol Ethers with Carbenes. VI.1 Allylic Rearrangements of Sulfur Ylids”, J. Org. Chem. (1965) 30, 728–732CrossRefGoogle Scholar
  59. 59.
    Sweat, F. W.; Epstein, W. W., unpublished observation in Epstein, W. W.; Sweat, F. W., “Dimethyl Sulfoxide Oxidations”, Chem. Rev. (1967) 67, 247–260, Ref. # 93CrossRefGoogle Scholar
  60. 60.
    Chittenden, G. J. F., “Synthesis of some new D-gulopyranose derivatives”, Chem. Commun. (1968) 779–780Google Scholar
  61. 61.
    Chittenden, G. J. F., “Oxidation of some derivatives of D-galactose with methyl sulphoxide-acid anhydride mixtures: a route to derivatives of D-glucose and D- talose”, Carbohydr. Res. (1970) 15, 101–109CrossRefGoogle Scholar
  62. 62.
    Kuzuhara, H.; Fletcher, H. G., Jr., “Syntheses with partially benzylated sugars. VIII. Substitution at carbon-5 in aldose. The synthesis of 5-O-methyl-D-glucofuranose derivatives ˆ , J. Org. Chem. (1967) 32, 2531–2534CrossRefGoogle Scholar
  63. 63.
    Onodera, K.; Hirano, S.; Kashimura, N., “Oxidation of Carbohydrates with Dimethyl Sulfoxide Containing Phosphorus Pentoxide”, J. Am. Chem. Soc. (1965) 87, 4651–4652CrossRefGoogle Scholar
  64. 64.
    McDonald, E. J., “A new synthesis of D-psicose (image-D-hexulose)”, Carbohydr. Res. (1967) 5, 106–108CrossRefGoogle Scholar
  65. 65.
    Tong, G. L.; Lee, W. W.; Goodman, L., “Synthesis of some 3'-O-methylpurine ribonucleosides”, J. Org. Chem. (1967) 32, 1984–1986CrossRefGoogle Scholar
  66. 66.
    Kuzuhara, H.; Fletcher, H. G., “Synthesis with partially benzylated sugars. IX. Syn- thesis of a 5-hexulosonic acid (5-oxohexonic acid) derivative and inversion of configuration at C-5 in an aldose”, J. Org. Chem. (1967) 32, 2535–2537CrossRefGoogle Scholar
  67. 67.
    Kuzuhara, H.; Oguchi, N.; Ohrui, H.; Emoto, S., “Preparation of perbenzylated 2- azido-2-deoxy-D-allono-1,5-lactone and its condensation with an amino acid ester” Carbohydr. Res.(1972) 23, 217–222CrossRefGoogle Scholar
  68. 68.
    Pravdic, N.; Fletcher, H. G., “The oxidation of partially substituted 2-acetamido-2-deoxyaldoses with methyl sulfoxide—acetic anhydride. Some 2-acetamido-2-deoxyal donic acid derivatives”, Carbohydr. Res. (1971)19, 353–364CrossRefGoogle Scholar
  69. 69.
    Onodera, K.; Hirano, S.; Kashimura, N.; Masuda, F.; Yajima, T.; Miyazaki, N., “Nu- cleosides and Related Substances. V. A Synthetic Procedure for Nucleosides with Use of Phosphorus Pentoxide as Dehydrating Agent”, J. Org. Chem. (1966) 31, 1291–1292CrossRefGoogle Scholar
  70. 70.
    Parikh, J. R.; Doering, W. von E., “Sulfur trioxide in the oxidation of alcohols by di- methyl sulfoxide”, J. Am. Chem. Soc. (1967) 89, 5505–5507CrossRefGoogle Scholar
  71. 71.
    Parikh, J. R.; Doering, W. von E., U. S. Patent 3,444,216 (May 19, 1969)Google Scholar
  72. 72.
    Cree, G. M.; Mackie, D. W.; Perlin, A. S., “Facile elimination accompanying some methyl sulfoxide oxidations. Formation of unsaturated carbohydrates”, Can. J. Chem. (1969) 47, 513–515CrossRefGoogle Scholar
  73. 73.
    Wiberg, K., in “Oxidation in Organic Chemistry”, Wiberg, K. (Ed.), Part A, (1965) Academic Press, New York and London, pp. 159–170 and references cited thereinGoogle Scholar
  74. 74.
    Sisler, H. H.; Bush, J. D.; Accountius, O. E., “Addition Compounds of Chromic An- hydride with Some Heterocyclic Nitrogen Bases ˆ”, J. Am. Chem. Soc. (1948) 70, 3827–3830CrossRefGoogle Scholar
  75. 75.
    Poos, G. I.; Arth, G. E.; Beyler, R. E.; Sarret, L. H., “Approaches to the Total Synthe- sis of Adrenal Steroids.1 V. 4b-Methyl-7-ethylenedioxy-1,2,3,4,4aα,4b,5,6,7,8,10,10a β-dodecahydrophenanthrene-4 β-ol-1-one and Related Tricyclic Derivatives”, J. Am. Chem. Soc. (1953) 75, 422–429CrossRefGoogle Scholar
  76. 76.
    Holum, J. R., “Study of the Chromium(VI) Oxide-Pyridine Complex”, J. Org. Chem. (1961) 26, 4814–4816CrossRefGoogle Scholar
  77. 77.
    Butterworth, R. F.; Hanessian, S., “Selected Methods of Oxidation in Carbohydrate Chemistry”, Synthesis (1971) 71–88Google Scholar
  78. 78.
    Collins, J. C.; Hess, W. W.; Frank, F. J., “Dipyridine-chromium(VI) oxide oxidation of alcohols in dichloromethane”, Tetrahedron. Lett. (1968) 9, 3363–3366Google Scholar
  79. 79.
    Ratcliffe, R.; Rodehorst, R., “Improved procedure for oxidations with the chromium trioxide-pyridine complex”, J. Org. Chem. (1970) 35, 4000–4002CrossRefGoogle Scholar
  80. 80.
    Arrick, R. E.; Baker, D. C.; Horton, D., “Chromium trioxide—dipyridine complex as an oxidant for partially protected sugars; preparation of aldehydo and certain keto sugar derivatives”, Carbohydr. Res.(1973) 26, 441–447CrossRefGoogle Scholar
  81. 81.
    Gunner, S. W.; Overend, W. G.; Williams, N. R., “The preparation of amino sugars from methyl glycopyranosiduloses: methyl 4-acetamido-4,6-dideoxy-a-α-L- talopyranoside”, Carbohydr. Res. (1967) 4, 498–504CrossRefGoogle Scholar
  82. 82.
    Collins, P. M.; Overend, W. G., “A synthesis of 6-deoxy-L-talose”, J. Chem. Soc. (1965) 1912–1918Google Scholar
  83. 83.
    Flaherty, B.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part VII. The synthesis of D-mycarose and D-cladinose”, J. Chem Soc.(C)(1966) 398–403Google Scholar
  84. 84.
    Burton, J. S.; Overend, W. G.; Williams, N. R., “Branched-chain sugars. Part III. The introduction of branching into methyl 3,4-O-isopropylidene- β -L-arabinoside and the synthesis of L-hamamelose”, J. Chem. Soc. (1965) 3433–3445Google Scholar
  85. 85.
    Jones, A. S.; Williamson, A. R.; Winkley, M., “The chromium trioxide-pyridine oxidation of deoxyribonucleosides and deoxyribonucleotides”, Carbohydr. Res. (1965) 1, 187–195CrossRefGoogle Scholar
  86. 86.
    Garegg, P. J.; Samuelson, B., “Oxidation of primary and secondary alcohols in par- tially protected sugars with the chromium trioxide-pyridine complex in the presence of acetic anhydride”, Carbohydr. Res. (1978) 67, 267–270CrossRefGoogle Scholar
  87. 87.
    Westheimer, F. H., “The Mechanisms of Chromic Acid Oxidations”, Chem. Rev. (1949) 45, 419–451CrossRefGoogle Scholar
  88. 88.
    Roccaronek, J.; Westheimer, F. H.; Eschenmoser, A.; Moldovány, L.; Schreiber, J., “Chromsäureester als Zwischenprodukte bei der Oxydation von Alkoholen. Gesch- windigkeits-limitierende Veresterung eines sterisch Gehinderten Alkohols” Helv. Chim. Acta (1962) 45, 2554–2567CrossRefGoogle Scholar
  89. 89.
    Wu, G. Y.; Sugihara, J. M., “The effect of stereochemistry on the oxidation of substi- tuted hexitols”, Carbohydr. Res. (1970) 13, 89–95CrossRefGoogle Scholar
  90. 90.
    Rammler, D. H.; Dekker, C. A., “The Synthesis of 1,5-Di-O-benzoyl-3,4-O- isopropylidene-D-xylulose from D-Arabitol”, J. Org. Chem. (1961) 26, 4615–4617CrossRefGoogle Scholar
  91. 91.
    Bird, J.W.; Jones, J. K. N., “The Synthesis of 3-Hexuloses: Part II. Derivatives of 1-Deoxy-L-arabo-3-hexulose (Syn. 6-Deoxy-L-lyxo-4-hexulose”, Can. J. Chem. (1963) 41, 1877–1881CrossRefGoogle Scholar
  92. 92.
    Stensio, K. E.; Wachtmeister, C. A., “Rapid and selective test for alcohols by using the chromium(VI) oxide-pyridine complex in a glacial acetic acid solution”, Acta Chem. Scand. (1964) 18, 1013–1014CrossRefGoogle Scholar
  93. 93.
    Hollenberg, D. H.; Klein, R. S.; Fox, J. J., “Pyridinium chlorochromate for the oxida- tion of carbohydrates”, Carbohydr. Res. (1978) 67, 491–494CrossRefGoogle Scholar
  94. 94.
    Malleron, A.; David, S, “A preparation of protected 2-deoxy-2-hydroxymethyl-D- mannose and -D-glucose derivatives not involving organometallic reagents”, Carbohydr. Res. (1998) 308, 93–98CrossRefGoogle Scholar
  95. 95.
    Liu, D.; Caperelli, C. A., “A New Synthesis of D-Ribonolactone from D-Ribose by Pyridinium Chlorochromate Oxidation”, Synthesis (1991) 933–934Google Scholar
  96. 96.
    Herscovici, J.; Antonakis, K., “Molecular sieve-assisted oxidations: new methods for carbohydrate derivative oxidations”, J. Chem. Soc., Chem. Commun.(1980) 561–562Google Scholar
  97. 97.
    Herscovici, J.; Egron, M.-J.; Antonakis, K., “New oxidative systems for alcohols: mo- lecular sieves with chromium(VI) reagents”, J. Chem. Soc., Perkin Trans.1 (1982) 1967–1973CrossRefGoogle Scholar
  98. 98.
    Roldan, F.; Gonzalez, A.; Palomo, C., “Nicotinium dichromate: a new cheap reagent for high-yielding large-scale oxidation of carbohydrates”, Carbohydr. Res. (1986) 149, C1-C4CrossRefGoogle Scholar
  99. 99.
    Andersson, F.; Samuelson, B., “Pyridinium dichromate-acetic anhydride: a new and highly efficient reagent for the oxidation of alcohols”, Carbohydr. Res. (1984) 129, C1-C3CrossRefGoogle Scholar
  100. 100.
    Lopez, C.; Gonzalez, A.; Cosio, F. P.; Palomo, C., “Reagents and synthetic methods. 49. 3-Carboxypyridinium dichromate (NDC) and (4-carboxypyridinium dichromate (INDC). Two new mild, stable, efficient and inexpensive chromium(VI) oxidation reagents”, Synth. Commun. (1985) 15, 1197–1211CrossRefGoogle Scholar
  101. 101.
    Czernecki, S.; Georgoulis, C.; Stevens, C. L.; Vijayakumaran, K., “Pyridinium chromate oxidation. Modifications enhancing its synthetic utility”, Tetrahedron Lett. (1985) 26, 1699–1702CrossRefGoogle Scholar
  102. 102.
    Malaprade, L., “Oxidation of some polyalcohols by periodic acid-applications”, Compt. rend. (1928) 186, 382–384Google Scholar
  103. 103.
    Malaprade, L., “Action of polyalcohols on periodic acid. Analytical application”, Bull. Soc. Chim. (France)(1928) 43 (4), 683–696Google Scholar
  104. 104.
    Clutterbuck, P. W.; Reuter, F., “The reaction of periodic acid with -ketols, -diketones, and -ketonealdehydes”, J. Chem. Soc. (1935) 1467–1469Google Scholar
  105. 105.
    Nicolet, B. H.; Shinn, L. A., “The Action of Periodic Acid on α -Amino Alcohols”, J. Am. Chem. Soc. (1939) 61, 1615–1615Google Scholar
  106. 106.
    Anbar, M.; Guttman, S., “The Isotopic Exchange of Oxygen between Iodate Ions and Water”, J. Am. Chem. Soc. (1961) 83, 781–783CrossRefGoogle Scholar
  107. 107.
    Brodskii, A. I.; Vysotskaya, N. A., “Oxygen isotope exchange in solutions of acids and salts and its mechanism”, Zh. Fiz. Khim. (1958) 32, 1521–1531; Chem. Abstr. (1959) 53, 1901Google Scholar
  108. 108.
    Criegee, R., Sitzber. Ges. Beförder. Ges. Naturw. Marburg (1934) 69, 25; Chem. Abstr. (1935) 29, 6820Google Scholar
  109. 109.
    Price, C. C.; Knell, M., “The Kinetics of the Periodate Oxidation of 1,2-Glycols. II. Ethylene Glycol, Pinacol and cis- and trans-Cyclohexene Glycols”, J. Am. Chem. Soc. (1942) 64, 552–554CrossRefGoogle Scholar
  110. 110.
    Angyal, S. J.; Young, R. J., “Glycol Fission in Rigid Systems. II. The Cholestane- 3β,6,7-triols. Existence of a Cyclic Intermediate”, J. Am. Chem. Soc. (1959) 81,5251–5255,CrossRefGoogle Scholar
  111. 111.
    Angyal, S. J.; Young, R. J., “Glycol Fission in Rigid Systems. I. The Camphane- 2,3-diols”, J. Am. Chem Soc. (1959) 81,5467–5472CrossRefGoogle Scholar
  112. 112.
    Criegee, R.; Büchner, E.; Walther, W., “Die Geschwindigkeit der Glykolspaltung mit BleiIV-acetat in Abhängigkeit von der Konstitution des Glykols”, Berichte (1940) 73, 571–575Google Scholar
  113. 113.
    Bulgrin, V. C., “The Periodate Oxidation of cis- and trans-Cyclopentanediol-1,2”, J. Phys. Chem. (1957) 61, 702–704CrossRefGoogle Scholar
  114. 114.
    Bulgrin, V. C; Dahlgren, G., “The Effect of Methyl Substitution on the Periodate Oxidation of cis- and trans-Cyclopentanediol-1,2”, J. Am. Chem. Soc. (1958) 80, 3883–3887CrossRefGoogle Scholar
  115. 115.
    Bunton, C. A.; Carr, M. D., “The hydroxylation of cyclic olefins by iodine and silver acetate”, J. Chem. Soc. (1963) 770–775Google Scholar
  116. 116.
    Duke, F. R., “Theory and Kinetics of Specific Oxidation. II. The Periodate-Glycol Reaction”, J. Am. Chem. Soc. (1947) 69, 3054–3055CrossRefGoogle Scholar
  117. 117.
    Halsall, T. G.; Hirst, E. L.; Jones, J. K. N., “Oxidation of carbohydrates by the peri- odate ion”, J. Chem. Soc. (1947) 1427–1432Google Scholar
  118. 118.
    Fleury, P., “Some nonclassical aspects of the oxidizing action of periodic acid on organic compounds”, Bull. Soc. Chim France (1955) 1126–1135Google Scholar
  119. 119.
    Fleury, P. F.; Courtois, J. E.; Bieder, A., “Comparative actions of periodic acid on stereoisomeric sugars”, Compt. rend. (1951) 233, 1042–1044Google Scholar
  120. 120.
    Fleury, P. F.; Courtois, J. E.; Bieder, A., “Action of periodic acid on stereoisomeric sugars and polyhydric alcohol s”, Bull. Soc. Chim. France (1952) 118–122Google Scholar
  121. 121.
    Viscontini, M.; Hürzeler-Jucker, E., “Beitrag zur Struktur-Ermittlung von O- und N- Glykosiden”, Helv. Chim. Acta (1956) 39, 1620–1631CrossRefGoogle Scholar
  122. 122.
    Pratt, J. W.; Richtmyer, N. K.; Hudson, C. S., “Proof of the Structure of Sedoheptu- losan as 2,7-Anhydro-β-D-altroheptulopyranose”, J. Am. Chem. Soc. (1952) 74, 2200–2205CrossRefGoogle Scholar
  123. 123.
    Honeyman, J.; Shaw, C. J. G., “Periodate oxidation. Part III. The mechanism of oxi-dation of cyclic glycols”, J. Chem. Soc. (1959) 2451–2454Google Scholar
  124. 124.
    Honeyman, J.; Shaw, C. J. G., “Periodate oxidation. Part IV. The effect of confor- mation of cyclic glycols on the rate of periodate oxidation”, J. Chem. Soc. (1959) 2454–2465Google Scholar
  125. 125.
    Karrer, P.; Pfaehler, K., “Oxydation von Glucose und Glucosederivaten mit Perjod- säure”, Helv. Chim. Acta. (1934) 17, 766–771CrossRefGoogle Scholar
  126. 126.
    Hough, L.; Taylor, T. J.; Thomas, G. H. S.; Woods, B. M., “The oxidation of mono- saccharides by periodate with reference to the formation of intermediary esters”, J. Chem. Soc. (1958) 1212–1217Google Scholar
  127. 127.
    Head, F. S. H., “Mechanism of the periodate oxidation of D-glucose”, Chem. & Ind. (London)(1958) 360–361Google Scholar
  128. 128.
    Spencer, C. C.; McGinn, C. J., “Indirect Method of Determining Optical Rotation of Some Monosaccharides”, Anal. Chem. (1960) 32, 136–136Google Scholar
  129. 129.
    Warsi, S. A.; Whelan, W. J., “Mechanism of the periodate oxidation of monosaccha- rides”, Chem. Ind. (London) (1958), 71Google Scholar
  130. 130.
    Lee, J. B., “Periodate oxidation of deoxy-hexoses and their derivatives”, J. Chem. Soc. (1960) 1474–1479Google Scholar
  131. 131.
    Cerny, M.; Stanek, J., “The structure of dextrans”, Monats. Chem. (1959) 90, 157–170CrossRefGoogle Scholar
  132. 132.
    Wolfrom, M. L.; Thompson, A.; O'Neill, A. N.; Galkowski, T. T., “Isomaltitol”, J. Am. Chem. Soc. (1952) 74, 1062–1064CrossRefGoogle Scholar
  133. 133.
    Head, F. S. H.; Hughes, G., “The oxidation of cellobiose by periodate”, J. Chem. Soc. (1954) 603–606Google Scholar
  134. 134.
    Hough, L.; Woods, B. M., “Quantitative estimation of carbon dioxide liberated on periodate oxidation of oxygen-substituted monosaccharides via malondialdehyde derivatives”, Chem. Ind. (London) (1957) 1421–1423Google Scholar
  135. 135.
    Perlin, A. S., “Oxidation of Carbohydrates with Periodate in the Warburg Respi- rometer”, J. Am. Chem. Soc. (1954) 76, 4101–4103CrossRefGoogle Scholar
  136. 136.
    Fletcher, H. G.; Diehl, H. W.; Ness, R. K., “Methyl β-D-Gulofuranoside and Cer- tain Other Derivatives of D-Gulose”, J. Am. Chem. Soc. (1954) 76, 3029–3031CrossRefGoogle Scholar
  137. 137.
    Manson, L. A.; Lampen, J. O., “Some Chemical Properties of Desoxyribose Nucleo- sides”, J. Biol. Chem. (1951)191, 87–93Google Scholar
  138. 138.
    Cantley, M.; Hough, L.; Pittet, A. O., “Factors influencing the course of peroxidate oxidation of carbohydrates”, Chem. & Ind. (London) (1959) 1126–1128Google Scholar
  139. 139.
    Cleaver, A. J.; Foster, A. B.; Hedgley, E. J.; Overend, W. G., “Periodate oxidation of deoxy-sugar derivatives”, J. Chem. Soc. (1959) 2578–2581Google Scholar
  140. 140.
    Kawashiro, I.; Tanabe, H.; Okada, T., “Periodic acid oxidation of N-glycosides (Preliminary report)”, Yakugaku Zasshi (1953) 73, 722–724Google Scholar
  141. 141.
    Kawashiro, I., “Periodic oxidation of N-glucosides. I”, Yakugaku Zasshi (1953), 73, 892–894Google Scholar
  142. 142.
    Kawashiro, I., “Periodic acid oxidation of N-glucosides. II”, Yakugaku Zasshi (1953), 73, 943–946Google Scholar
  143. 143.
    Kawashiro, I., “Periodic acid oxidation of N-glucosides. III”, Yakugaku Zasshi (1954), 74, 33–36Google Scholar
  144. 144.
    Kawashiro, I., “Periodic acid oxidation of N-glucosides. IV”, Yakugaku Zasshi (1954), 74, 328–330Google Scholar
  145. 145.
    Kawashiro, I., “Periodic acid oxidation of N-glycosides. V”, Yakugaku Zasshi (1955), 75, 97–101Google Scholar
  146. 146.
    Kawashiro, I., “Periodic acid oxidation of N-glycosides. VI”, Yakugaku Zasshi (1955), 75, 101–104Google Scholar
  147. 147.
    Kawashiro, I., “Periodic acid oxidation of N-glycosides. VII”, Yakugaku Zasshi (1956), 76, 70–73Google Scholar
  148. 148.
    Tanabe, H., J. Pharm. Soc. Japan (1956) 76, 1023Google Scholar
  149. 149.
    Tanabe, H., J. Pharm. Soc. Japan (1957) 77, 161Google Scholar
  150. 150.
    Bonner, W. A.; Drisko, R. W., “Periodate Oxidations of Phenyl β-D-Thiogly copyranosides, Phenyl β-D-Glucopyranosyl Sulfones and Related Compounds”, J. Am. Chem. Soc. (1951) 73, 3699–3701CrossRefGoogle Scholar
  151. 151.
    Okui, S., J. Pharm. Soc. Japan (1955) 75, 1262Google Scholar
  152. 152.
    Hough, L.; Taha, M. I., “The periodate oxidation of some thioacetals and sul- phones”, J. Chem. Soc. (1957) 3994–3997Google Scholar
  153. 153.
    Loring, H. S.; Levy, L. W.; Moss, L. K.; Ploeser, J. Mc.T., “Periodate Oxidation of Sugar Phosphates in Neutral Solution. I. D-Ribose 5-Phosphate”, J. Am. Chem. Soc. (1956) 78, 3724–3727CrossRefGoogle Scholar
  154. 154.
    Perlin, A. S., “Action of Lead Tetraacetate on the Sugars”, Adv. Carbohydr. Chem. (1959) 14, 9–61Google Scholar
  155. 155.
    Criegee, R., “Neuere Untersuchungen über Oxydationen mit Bleitetraatat”, Angew. Chem. (1958) 70, 173–179CrossRefGoogle Scholar
  156. 156.
    Criegee, R. “New methods in organic synthesis. III. Oxidation with lead tetraace- tate and periodic acid”, Angew. Chem. (1940) 53, 321–326CrossRefGoogle Scholar
  157. 157.
    Criegee, R., “The specificity of oxidizing agents: A comparison of the oxidizing ac- tion of lead tetraacetate and periodic acid upon polyhydroxy compounds”, Sitzber. Ges. Beförder. Ges. Naturw. Marburg (1934) 69, 25–47; Chem. Abstr. (1935) 229, 6820Google Scholar
  158. 158.
    Criegee, R., “Determination of the ring structure of sugars and sugar derivatives”, Annalen(1932) 495, 211–225Google Scholar
  159. 159.
    Criegee, R.; Kraft, L.; Rank, B., “Glycol splitting, its mechanism and its use in chemical problems”, Annalen(1933) 507, 159–197Google Scholar
  160. 160.
    Criegeee, R.; Höger, E.; Huber, G.; Kruck, P.; Marktscheffel, F.; Schellenberger, H., “Die Geschwindigkeit der Glykolspaltung mit Bleitetraacetat in Abhängigkeit von Konstitution und Konfiguration des Glykols. (III. Mitteilung)”, Liebigs Ann. (1956) 599, 81–124CrossRefGoogle Scholar
  161. 161.
    Angyal, S. J.; Young, R. J., “Glycol Fission in Rigid Systems. II. The Cholestane- 3β,6,7-triols. Existence of a Cyclic Intermediate”, J. Am. Chem. Soc. (1959) 81,5251–5255CrossRefGoogle Scholar
  162. 162.
    Hocket, R. C.; Dienes, M. T.; Fletcher, H. G.Jr.; Ramsden, H. E., “Lead Tetraace- tate Oxidations in the Sugar Group. V.1 The Rates of Oxidation of Open-Chain Polyalcohols in Dry Acetic Acid Solution”, J. Am. Chem. Soc. (1944) 66, 467–468CrossRefGoogle Scholar
  163. 163.
    Fleury, P. F.; Courtois, J. E.; Bieder, A., “Action of periodic acid on stereoisomeric sugars and polyhydric alcohols”, Bull. Soc. chim. France (1952) 118–122Google Scholar
  164. 164.
    Vargha, L., “Red lead as a selective oxidant”, Nature (1948) 162, 927–928CrossRefGoogle Scholar
  165. 165.
    Hockett, R. C.; Fletcher, H. G.Jr., “Lead Tetraacetate Oxidations in the Sugar Group. VI.1 The Structures of Certain Di- and Tribenzoates of D-Sorbitol and D- Mannitol”, J. Am. Chem. Soc. (1944) 66, 469–472CrossRefGoogle Scholar
  166. 166.
    Barton, D. H. R.; Lester, D. J.; Motherwell, W. B.; Barros Papoula, M. T., “Oxida- tion of organic substrates by pentavalent organobismuth reagents”, J. Chem. Soc. Chem. Commun. (1979) 705–707Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biochemistry & Molecular BiologyPennsylvania State University, Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations