Electrochemical, Microscopic and Surface Analytical Studies of Amorphous and Nanocrystalline Alloys

  • Maria Janik-Czachor
  • Marcin Pisarek
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 46)


To meet the extreme demands of modern technology, functionalized materials of enhanced specific properties are required. Moreover, high resolution methods of characterizing new materials are needed in identifying the factors responsible for such materials unique properties.

This chapter falls under the general heading Chemistry for Materials Science, and is aimed at discussing new results, ideas and technologies in the field of the chemical properties of novel materials including (but not limited to) amorphous and nanocrystalline alloys obtained by rapid quenching, sputter deposition, mechanical alloying, heavy deformation, electrodeposition and other physical and mechanical methods.

Nonequilibrium processing techniques provide the potential for producing compositionally and structurally graded materials with optimized properties. And so it is important to discuss means and measures of lowering the reactivity of metastable alloys to reduce (or possibly eliminate) detrimental processes of deterioration such as corrosion/dissolution, or of enhancing their chemical reactivity, durability, and selectivity for catalytic/electrocatalytic processes. It has been recognized that, due to the almost unlimited compositional flexibility of metastable alloys, their properties can be optimized for the requirements of a given application.


Amorphous Alloy Passive Film Auger Electron Spectroscopy Refractory Metal Hydrogen Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.J. Engell and N.D. Stolica, Z. Phys. Chem. N.F., 20 (1959) 113.Google Scholar
  2. 2.
    H.J. Engell and G. Herbsleb, Z. Phys. Chem. N.F., 215 (1960) 167.Google Scholar
  3. 3.
    H. Kaesche, Z. Phys. Chem. N.F., 34 (1962) 87.Google Scholar
  4. 4.
    M. Janik-Czachor, Z. Szklarska-Smialowska, Brit. Corr. J., 4 (1969) 138.Google Scholar
  5. 5.
    K. J. Vetter and H. H. Strehblow, Localized Corrosion NACE 1974, p.240.Google Scholar
  6. 6.
    A. Wolowik, thesis, Polish Academy of Sciences, Warsaw 2001.Google Scholar
  7. 7.
    Ph. Marcus, Corr. Sci., 36 (1988) 2155.CrossRefGoogle Scholar
  8. 8.
    H. Habazaki, M. A.P eaz, K. Shimizu, P. Skeldon, G. E. Thompson, G. C. Wood, and X. Zhou, Corr. Sci., 38 (1999) 2053.Google Scholar
  9. 9.
    X. Zhou, G.E. Thompson, P. Skeldon, G.C. Wood, K. Shimizu, H. Habazaki; Corr. Sci., 41 (1999) 1599.CrossRefGoogle Scholar
  10. 10.
    H. Yosioka, H. Habazaki, A. Kawashima, K. Asami, and K. Hashimoto,; Corr. Sci., 32 (1991) 313 and 327.CrossRefGoogle Scholar
  11. 11.
    X. Zhou, H. Habazaki, G. E. Thompson, and G. C. Wood, Corr. Sci., 38 (1996) 1563 and X. Zhou, G.E. Thompson, H. Habazaki, K. Shimizu, P. Skeldon, G.C. Wood, Thin Solid Films, 293 (1997) 327.Google Scholar
  12. 12.
    M. Janik-Czachor, A. Wolowik, and Z. Werner, Corr. Sci., 36 (1994) 1921.CrossRefGoogle Scholar
  13. 13.
    A. Wolowik, M. Janik-Czachor, and A. Szummer; Proc. Symp., Passivity and its Breakdown (Eds. P.M. Natishan, H.S. Isaacs, M. Janik-Czachor, V.A. Macagano, P. Marcus, M. Seo), The Electrochemical Society, NJ, Vol. 97–26 (1998) 533.Google Scholar
  14. 14.
    A. Wolowik and M. Janik-Czachor; Mat. Sci. Eng. A, 267 (1999) 301.CrossRefGoogle Scholar
  15. 15.
    E. Sikora, B.A. Shaw, and T. Miller, Proc. Symp. Passivity and its Breakdown (Eds. P.M. Natishan, H.S. Isaacs, M. Janik-Czachor, V.A. Macagano, P. Marcus, M. Seo), The Electrochemical Society, NJ, Vol. 97–26 (1998) 654.Google Scholar
  16. 16.
    B. Shaw, W.C. Moshier, R. Went, P. Miller, and E. Principe; 5th International Symposium on Electrochemical Methods in Corrosion Research, EMCR’94, Lisbon, Portugal, 1994.Google Scholar
  17. 17.
    M. Janik-Czachor, A. Jaskiewicz, P. Kedzierzawski, and Z. Werner, Mat. Sci. Eng. A; 358 (2003) 171.CrossRefGoogle Scholar
  18. 18.
    G.S. Frankel, R.C. Newman, C.V. Johnes, and A. Russak, J.Electrochem. Soc., 140 (1993) 2192.CrossRefGoogle Scholar
  19. 19.
    M. Janik-Czachor, J. Electrochem. Soc., 128 (1981) 513C.CrossRefGoogle Scholar
  20. 20.
    H. Habazaki, P. Skeldon, G E. Thompson, and G. C. Wood; Phil. Mag. B, 71 (1995) 81 and H. Habazaki, K. Shimizu, P. Skeldon, G. E. Thompson, G. C. Wood, and X. Zhou, Corr. Sci., 37 (1997) 731.CrossRefGoogle Scholar
  21. 21.
    R. Kirchheim, B. Heine, S. Hofmann, and H. Knote; Corr. Sci., 31 (1990) 191; Corr. Sci. 29 (1989) 889.CrossRefGoogle Scholar
  22. 22.
    K. Hashimoto, P.-Y. Park, J.-H. Kim, H. Yoshioka, H. Mitsui, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, Z. Grzesik, and S. Mrowec, Mat. Sci. Eneg. A 198 (1995) 1.CrossRefGoogle Scholar
  23. 23.
    H. Kaesche, Korrosion der Metalle, Springer Verlag, Berlin, 1976, p. 264.Google Scholar
  24. 24.
    J. B. Bessone, D. R. Salians, C. Mayer, M. Ebert, and J. W. Lorenz, Electrochim. Acta, 37 (1992) 2283.CrossRefGoogle Scholar
  25. 25.
    H. Bohni and H.H. Uhlig, Corros.Sci., 9 (1969) 329.CrossRefGoogle Scholar
  26. 26.
    F. Mansfeld, Y. Wang, and H. Shih, Electrochim. Acta, 73 (1992) 2277.CrossRefGoogle Scholar
  27. 27.
    Z. Werner, A. Jaskiewicz, M. Pisarek, M. Janik-Czachor, M. Barlak, and Z. Phys. Chem., 219 (2005) 1461–1479.Google Scholar
  28. 28.
    A. Jaśkiewicz, Stability of the passive state and the composition of anodic oxide films on Al-Ta and Al-Ṇb amorphous alloys, thesis, Warsaw University of Technology, 2007.Google Scholar
  29. 29.
    T. Valand and K. E. Heusler, J. Electroanal. Chem., 149 (1983) 71.CrossRefGoogle Scholar
  30. 30.
    H. Habazaki, P. Skeldon, G. E. Thompson, and G. C. Wood, Philosophical Mag. B, 71 (1995) 1497.Google Scholar
  31. 31.
    H. Habazaki, K. Shimizu, G.E. Thompson, G.C. Wood, and X. Zhou, Corros. Sci., 39 (1997) 731.CrossRefGoogle Scholar
  32. 32.
    A. Crossland, G. E. Thompson, J. Wan, H. Habazaki, K. Shimizu, P. Skeldon, and G.C. Wood, J.Electrochem.Soc., 144 (1997) 847.CrossRefGoogle Scholar
  33. 33.
    M. Janik-Czachor, Corr. Sci., 33 (1992) 1327.CrossRefGoogle Scholar
  34. 34.
    H. Habazaki, K. Schimizu, P. Skeldon, G. E. Thompson, and G. C. Wood, Proc. R. Soc. A 453 (1997) 15.CrossRefGoogle Scholar
  35. 35.
    G. Alcala, S. Mato, P. Skeldon, G. E. Thompson, P. Bailey, T. C. Q. Noakes, H. Habazaki, and K. Shimizu; Corr. Sci., 45 (2003) 1803–1813.CrossRefGoogle Scholar
  36. 36.
    M. Janik-Czachor, A. Jaśkiewicz, P. Kędzierzawski, and Z. Werner, Mater. Sci. Eng. A, 358 (2003) 171.CrossRefGoogle Scholar
  37. 37.
    Avantage Data System version 3.83 - Thermo Scientific software.Google Scholar
  38. 38.
    L. C. Feldman and J. W. Mayer; Fundamentals of surface and thin film analysis, North-Holland, New York – Amsterdam – London, 1986.Google Scholar
  39. 39.
    R. Z. Valiev and I. V. Alexandrov, Nanostructured Mater. 12 (1999) 35.CrossRefGoogle Scholar
  40. 40.
    M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Mater. Sci. Eng. A (2002) 82.Google Scholar
  41. 41.
    M. Suś-Ryszkowska, T. Wejrzanowski, Z. Pakieła, and K. J. Kurzydłowski, Mat. Sci. Eng. A 369 (2004)151.CrossRefGoogle Scholar
  42. 42.
    K.J. Kurzydłowski, Bulletin of the Polish Academy of Sciences, Technical Sciences 52 (4) (2004)301.Google Scholar
  43. 43.
    J-Ch. Hung and Ch. Hung, J. Mater. Process. Tech. 104 (2000) 226.CrossRefGoogle Scholar
  44. 44.
    M. Lewandowska, J. Microsc. 224 (2006) 34.CrossRefGoogle Scholar
  45. 45.
    H. Garbacz, M. Lewandowska, W. Pachla, and K.J. Kurzydłowski, J. Microsc. 223 (2006)272.CrossRefGoogle Scholar
  46. 46.
    D. Klassek, T. Suter, P. Schmutz, W. Pachla, M. Lewandowska, K. J. Kurzydłowski, and O. von Trzebiatowski, Solid State Phenom 114 (2006)189.CrossRefGoogle Scholar
  47. 47.
    Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, and K. Tsuzaki, Corros. Sci. 49 (2007) 2962.CrossRefGoogle Scholar
  48. 48.
    K. Krasilnikov, W. Lojkowski, Z. Pakiela, and R. Valiev, Mat. Sci. Eng. 397 (2005)330.CrossRefGoogle Scholar
  49. 49.
    Stainless Steels and Ferrous Alloys, in: R.P. Frankenthal and J. Kruger, editors. Passivity of Metals. New Jersey: The Electrochemical Society, INC., Princeton, 1978, p. 646–770.Google Scholar
  50. 50.
    N. Sato and K. Hashimoto, editors. Passivation of Metals and Semiconductors, Oxford, Pergamon Press, 1990. The Sixth International Symposium on Passivity, Sapporo, Japan, 1989.Google Scholar
  51. 51.
    K.E. Heusler, editor. Passivation of Metals and Semiconductors, Special issue of Mater. Sci. Forum 185–188, (1995): p. 221–364.Google Scholar
  52. 52.
    P. M.Natishan, H.S. Isaacs, M. Janik-Czachor, V.A. Macagano, P. Marcus, and M. Seo, editors, Passivity and its Breakdown, The Electrochemical Society, NJ, Pennington, 1998.Google Scholar
  53. 53.
    L.M. Bastidas, C.L. Torres, E. Cano, and J.L. Polo, Corros. Sci. 44 (2002) 625.CrossRefGoogle Scholar
  54. 54.
    Ch.Ch. Shih, Ch.-M. Shih, Y.-Y. Su, L.H.J. Su, M.-S. Chang, and S.-J. Lin, Corros. Sci. 46 (2004) 427.CrossRefGoogle Scholar
  55. 55.
    K. Hashimoto and K. Asami, Factors determining corrosion resistance of chromium-bearing alloys, in: R.P.Frankenthal and J.Kruger, editors, Passivity of Metals, New Jersey, Princeton, The Electrochemical Society, INC., 1978, p. 749.Google Scholar
  56. 56.
    M. Janik-Czachor, J. Electrochem. Soc. 513C-519C (1981).Google Scholar
  57. 57.
    M. Janik-Czachor, G.C. Wood, G.E. Thompson., Brit. Cor. J. 15 (1980) 154.Google Scholar
  58. 58.
    H.J. Engell and R.A. Oriani, Corros. Sci. 29 (1989) 119.CrossRefGoogle Scholar
  59. 59.
    J.B. Lumsden and R. W. Staehle, Scripta Mat. 6 (1972) 1205.CrossRefGoogle Scholar
  60. 60.
    M. Pisarek, P. Kędzierzawski, T. Płociński, M. Janik-Czachor, and K.J. Kurzydłowski, Mater.Charac. 59 (2008) 1292.CrossRefGoogle Scholar
  61. 61.
    S. Yang and D.D. Mcdonald, Electrochim. Acta 52 (2007) 1871.CrossRefGoogle Scholar
  62. 62.
    M. Pisarek, P. Kędzierzawski, M. Janik-Czachor, and K. J. Kurzydłowski, Corrosion NACE 64 (2) (2008) 131.CrossRefGoogle Scholar
  63. 63.
    M. Pisarek, P. Kędzierzawski, M. Janik-Czachor, and K.J. Kurzydłowski, Electrochem. Commun. 9 (2007) 2463.CrossRefGoogle Scholar
  64. 64.
    M. Pisarek, P. Kędzierzawski, M. Janik-Czachor, and K. J. Kurzydłowski, J. Solid State Electrochem. 13 (2009) 283.CrossRefGoogle Scholar
  65. 65.
    G. S. Eklund, J. Electrochem. Soc. 121 (1974) 121.CrossRefGoogle Scholar
  66. 66.
    J. Scotto, G. Ventura, and E. Traverso, Corros. Sci. 19 (1979) 237.CrossRefGoogle Scholar
  67. 67.
    B. Baroux and G. Gorse, The effect of pH and potentiostatic polarisation on the pitting resistance of stainless steels: relation to non-metallic inclusions or passive film modifications. Proc. European Symp. on Modification of Passive Films, EFC-CPS. London, Institute of Materials 1994; 12:300.Google Scholar
  68. 68.
    E.F.M. Jansen, W.G. Sloof, and J.H. W. de Wit, Inclusions in stainless steels – their role in pitting initiation. Proc. European Symp. on Modification of Passive Films, EFC-CPS. London, Institute of Materials 1994; 12:290.Google Scholar
  69. 69.
    M. Janik-Czachor, A. Szummer, Corrosion Review, M. Schorr, editor, 11 (1993)118.Google Scholar
  70. 70.
    A. Rossi, B. Elsner, G. Hahner, M. Textor, and N.D. Spencer, Surf. Interface Anal., 29 (2000) 460–467.CrossRefGoogle Scholar
  71. 71.
    M. Janik-Czachor, Mater. Sci. Forum 1 (1995) 185–188.Google Scholar
  72. 72.
    P. Schmuki, H. Hildebrand, A. Freidrich, and S. Virtanen, Corros. Sci. 47 (2005) 1239–1250.CrossRefGoogle Scholar
  73. 73.
    A. Szummer, M. Janik-Czachor, and S. Hofmann, Proc European Symp on Modification of Passive Films, EFC-CPS. London, Institute of Materials, 12 (1994) 280–288.Google Scholar
  74. 74.
    G. Okamoto, T. Shibata, Passivity and the breakdown of passivity of stainless steel, in R. P. Frankenthal, and J. Kruger, editors, Passivity of Metals, New Jersey, Princeton, The Electrochemical Society, INC., 1978; p. 646.Google Scholar
  75. 75.
    H. H. Kung, Catal. Rev. Sci. Eng. 22 (1980) 235.CrossRefGoogle Scholar
  76. 76.
    K. Klier, Adv. Catal. 31 (1982) 243.CrossRefGoogle Scholar
  77. 77.
    J. C. J. Bart and R. P. A Sneeden, Catal. Today 2 (1987) 1.CrossRefGoogle Scholar
  78. 78.
    A. Baiker, in: G. Ertl, H. Knozinger, and J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis, vol. 2, Wiley-VCH, Weinheim, 1997, p.803.Google Scholar
  79. 79.
    A. Molnar, G. V. Smith, and M. Bartok, Adv. Catal. 36 (1989) 329.CrossRefGoogle Scholar
  80. 80.
    K. Hashimoto, Mater. Sci. Eng. A226–228 (1999) 891.Google Scholar
  81. 81.
    A. Baiker, R. Schlogl, E. Armbruster, and H.-J. Guntherodt, J. Catal. 107 (1987) 221.CrossRefGoogle Scholar
  82. 82.
    K. Hashimoto, H. Habazaki, M. Yamasaki, S. Meguro, T. Sasaki, H. Katagiri, T. Matsui, K. Fujimura, K. Izumiya, N. Kumagai, and E. Akiyama, Mater. Sci. Eng. A 304–306 (1999) 88.Google Scholar
  83. 83.
    A. Szummer, M. Pisarek, M. Dolatạta, A. Molnar, M. Janik-Czachor, M. Varga, and K. Sikorski, Mater. Sci. Forum 377 (2000) 15.CrossRefGoogle Scholar
  84. 84.
    M. Janik-Czachor, A. Szummer, J. Bukowska, A. Molnar, P. Mack, S.M. Filipek, P. Kedzierzawski, A. Kudelski, M. Pisarek, M. Dolata, and M. Varga, Appl. Catal. A 235 (2002) 157.CrossRefGoogle Scholar
  85. 85.
    M. Pisarek and M. Janik-Czachor, Microsc.Microanal., 12 (2006) 228–237.CrossRefGoogle Scholar
  86. 86.
    G. Ertl and J. Kueppers, Low Energy Electrons and Surface Chemistry, pp. 17–64, Weinheim: VCH (1985).Google Scholar
  87. 87.
    M. Pisarek, M. Janik-Czachor, P. Kedzierzawski, A. Molnar, B. Rac, and A. Szummer, Pol. J. Chem. 78 (2004) 1379.Google Scholar
  88. 88.
    M. Pisarek, M. Janik-Czachor, A. Gebert, A. Molnar, P. Kedzierzawski, and B. Rac, Appl. Catal. A267 (2004) 1.Google Scholar
  89. 89.
    M. Pisarek, M. Janik-Czachor, and A. Molnar, B. Rac, Electrochim. Acta, 50 (2005) 5111.CrossRefGoogle Scholar
  90. 90.
    A. Molnar, L. Domokos, T. Martinek, T. Katona, G. Mulas, G. Cocco, I. Bertoti, and J. Szepvolgyi, Mater. Sci. Eng. A 226–228 (1997) 1074.Google Scholar
  91. 91.
    R. J. Madix, Adv. Catal. 29 (1980) 1.CrossRefGoogle Scholar
  92. 92.
    J. Cunningham, G.H. Sayyed, J.A. Cronin, J.L.G. Fierro, C. Healy, W. Hirschwald, M. Ilyas, and J. P. Tobin, J. Catal. 102 (1986) 160.CrossRefGoogle Scholar
  93. 93.
    F. Pepe, R. Polini, and L. Stoppa, Catal. Lett. 14 (1992) 15.CrossRefGoogle Scholar
  94. 94.
    Y. Han, J. Shen, and Y. Chen, Appl. Catal. A205 (2001) 79.Google Scholar
  95. 95.
    R.M. Rioux and M.A. Vannice, J. Catal. 216 (2003) 362.CrossRefGoogle Scholar
  96. 96.
    A. Guerrero-Ruiz, I. Rodrigez-Ramos, and J. L. G. Fierro, Appl. Catal. 72 (1991) 119.CrossRefGoogle Scholar
  97. 97.
    N. Kanoun, M. P. Astier, and G.M. Pajonk, J. Mol. Catal. 79 (1993)217.CrossRefGoogle Scholar
  98. 98.
    A.J. Marchi, J. L.G. Fierro, J. Santamaria, and A. Monzon, Appl. Catal. A142 (1996) 375.Google Scholar
  99. 99.
    A. Aboukais, R. Bechara, C. F. Aissl, J. P. Bonnelle, A. Ouqour, M. Loukah, G. Coudurier, and J. C. Vedrine, J. Chem. Soc., Faraday Trans. 89 (1993) 2545.CrossRefGoogle Scholar
  100. 100.
    I. E. Wachs, R. J. Madix, J. Catal. 53 (1978) 208.CrossRefGoogle Scholar
  101. 101.
    I. E. Wachs, R. J. Madix, Appl. Surf. Sci. 1 (1978) 303.CrossRefGoogle Scholar
  102. 102.
    M. A. Chester, E. M. Mccash, Spectrochim. Acta 43A (1987) 1625.Google Scholar
  103. 103.
    B. A. Sexton, Surf. Sci. 88 (1979) 299.CrossRefGoogle Scholar
  104. 104.
    W. R. Patterson, J. A. Roth, and R. L. Burwell, J. Am. Chem. Soc. 93 (1971) 839.CrossRefGoogle Scholar
  105. 105.
    D. A. Chen and C. M. Friend, Langmuir 14 (1998) 1451.CrossRefGoogle Scholar
  106. 106.
    M. K. Weldon and C. M. Friend, Chem. Rev. 96 (1996) 1391.CrossRefGoogle Scholar
  107. 107.
    M. Kraus, G. in, H. Ertl, J. Weitkamp Knozinger editors, Handbook of Heterogeneous Catalysis, vol. 5, Wiley-VCH, Weinheim, 1997, p. 2159.Google Scholar
  108. 108.
    L. Nondek and J. Sedlacek, J. Catal. 40 (1975) 34.CrossRefGoogle Scholar
  109. 109.
    N.Ismail, M.Uhlemann, A.Gebert and J.Eckert, J. Alloy Compd. 298 (2000) 146.CrossRefGoogle Scholar
  110. 110.
    N.Ismail, A.Gebert, M. Uhlemann, J. Eckert, and L. Schultz, J. Alloy Compd. 314 (2001) 170.CrossRefGoogle Scholar
  111. 111.
    M. Pisarek, M. Janik-Czachor, A. Molnar, and K. Hughes, Appl. Catal. A 283 (2005) 177.CrossRefGoogle Scholar
  112. 112.
    A. Molnar, I. Bartok, J. Szepvolgyi, G. Mulas, and G. Cocco, J. Phys. Chem. B102 (1998) 9258.Google Scholar
  113. 113.
    S. Majorowski and B. Baranowski, J. Phys. Chem. Solids 43 (1982) 1119.CrossRefGoogle Scholar
  114. 114.
    E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen. pp. 406–416. Berlin, Heidelberg, New York: Springer-Verlag (1976).Google Scholar
  115. 115.
    S. Mroz, Acta Phys. Pol., 89 (1996) 183–194.Google Scholar
  116. 116.
    D. Briggs and J. T Grant, Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Chichester, UK: IM Publications (2005).Google Scholar
  117. 117.
    F. Reniers and C. Tewell, J Electron Spectrosc, 142 (2005) 1–25.CrossRefGoogle Scholar
  118. 118.
    M.-J. Chung, S.-H. Han, K.-Y. Park, and S.-K. Ihm, J. Mol. Catal. 79 (1993) 335.CrossRefGoogle Scholar
  119. 119.
    M. Pisarek, Chemical methods of surface modification of Cu-based amorphous alloys for catalytic applications, thesis, Warsaw University of Technology, Warsaw, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Maria Janik-Czachor
    • 1
  • Marcin Pisarek
    • 1
    • 2
  1. 1.Institute of Physical Chemistry Polish Academy of SciencesWarsawPoland
  2. 2.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations