Thermal Properties of Crystals

  • Manijeh Razeghi

In Chapter 5, we built simple mathematical models to describe the vibrations of atoms, first in a one-dimensional system and then extended to a three-dimensional harmonic crystal. These models, in the quantum description, led us to introduce a quasi-particle called the phonon, with an associated momentum and energy spectrum. Many of the phenomena measured in crystals can be traced back to phonons. In this Chapter, we will employ the results of the phonon formalism used in Chapter 5 to interpret the thermal properties of crystals, in particular their heat capacity, thermal expansion and thermal conductivity.


Thermal Conductivity Heat Capacity Debye Temperature Lattice Vibration Phonon Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag US 2009

Authors and Affiliations

  • Manijeh Razeghi
    • 1
  1. 1.Department of Electrical Engineering & Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations