Advertisement

Enabling Broadband Wireless Technologies

  • Quazi M. Rahman
Chapter
Part of the Optical Networks book series (OPNW)

Abstract

Abstract The fundamental features of next generation wireless communications systems include very high-speed data transmission–reception scheme and ubiquitous interactive multimedia services both of which demand wide bandwidth system. To fulfill this demand, broadband communication system has been brought into the wireless domain, and in recent years, it has been offering a remarkable growth in the telecommunications industry. The major goal of all these technologies is to deliver very high data rate (in multimegabits per seconds) throughput to the end user by satisfying some stringent quality of service (QoS) to support variety of services, such as data, voice, and multimedia. Here we discuss a number of physical layer techniques that are enabling the broadband wireless technologies to move forward by meeting some of these QoS requirements. The discussion addresses modulation, coding, multiple access, and diversity techniques. Some challenges along with some research evidences on the broadband wireless communication systems have also been presented in this chapter.

Keywords

Orthogonal Frequency Division Multiplex Code Division Multiple Access Orthogonal Frequency Division Multiplex System Orthogonal Frequency Division Multiple Access Turbo Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bing, B. (2008). Next-Generation Broadband Networks. Proceedings of the IEEE Annual Communication Networks and Services Research Conference (CNSR) Halifax, NS, Canada.Google Scholar
  2. 2.
    Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamental of WiMAX, Understanding Broadband Wireless Networking. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
  3. 3.
    Simon, M., & Alouini, M. (2004). Digital Communication Over Fading Channels. 2nd ed. New York: John Wiley and Sons Inc.Google Scholar
  4. 4.
    Ramachandran, I., & Roy, S. (2007). Clear channel assessment in energy constrained wideband wireless networks. IEEE Transaction on Wireless Communications. 14(3), 70–78.CrossRefGoogle Scholar
  5. 5.
    Burr, A. (2001). Modulation and Coding for Wireless Communications. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
  6. 6.
    Giltin, R. D., Hayes, J. F., & Weinstein, S.B. (1992). Data Communications Principles. New York: Plenum Press.Google Scholar
  7. 7.
    Proakis, J. G. (1995). Digital Communications. 3rd ed. New York: McGraw Hill Series.Google Scholar
  8. 8.
    Alasady, H., Ibnkahla M., & Rahman, Q. M. (2006). Symbol error rate calculation and data pre-distortion for 16-QAM transmission over nonlinear memoryless satellite channels. Wireless Communications and Mobile Computing. 8(2), 1530–8669.Google Scholar
  9. 9.
    Park, D. C., & Jeong, T. J. (2002). Complex-bilinear recurrent neural network for equalization of a digital satellite channel. IEEE Transactions on Neural Networks. 13(3), 711–725.CrossRefGoogle Scholar
  10. 10.
    Costa, E., & Puoilin, S. (2002). M-QAM OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Transactions on Communications. 40(10), 101–109.Google Scholar
  11. 11.
    Shelswell, P. (1995). The COFDM modulation system: The heart of digital audio broadcasting. Electronics and Communications Engineering Journal. 7(3), 127–136.CrossRefGoogle Scholar
  12. 12.
    Nee, R. V., & Prasad, R. (1999). OFDM Wireless Personal Communications. Artech House.Google Scholar
  13. 13.
    Cimini, L. J. (1985). Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications. 33(7), 665–675.CrossRefGoogle Scholar
  14. 14.
    Li, Z., & Xia, X. (2008). PAPR reduction for repetition space-time-frequency coded MIMO-OFDM systems using chu sequences. IEEE Transactions on Wirelesss Communications. 7(4), 1195–1202.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Tsai, Y., Deng, S., Chen, K., & Lin, M. (2008). Turbo coded OFDM for reducing PAPR and error rates. IEEE Transactions on Wirelesss Communications. 7(1), 84–89.CrossRefGoogle Scholar
  16. 16.
    Nee, R. V., et al. (1999). New high-rate wireless LAN standards. IEEE Communications Magazine. 37(12), 82–88.CrossRefGoogle Scholar
  17. 17.
    Smith, C., & Meyer, J. (2005). 3G Wireless with WiMAX and Wi-FI. New York: McGraw Hill Series.Google Scholar
  18. 18.
    Shanon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal. 27, 379–423, 623–657.MathSciNetGoogle Scholar
  19. 19.
    Ungerboeck, G. (1987). Trellis coded modulation with redundant signal sets, part I: introduction. IEEE Communications Magazine. 25(2), 5–11.CrossRefGoogle Scholar
  20. 20.
    Huang, Q., Chan, S., Ping, L., & Ko, K. (2007). Performance of hybrid ARQ using trellis-coded modulation over rayleigh fading channel. IEEE Transactions on Vehicular Technology. 56(5), 2784–2790.CrossRefGoogle Scholar
  21. 21.
    Stenbit, J. P. (1964). Tables of generators for bose-chadhuri codes. IEEE Transaction on Information Theory. 10(4), 390–391.CrossRefGoogle Scholar
  22. 22.
    Fallager, R. G. (1968). Information Theory and Reliable Communication. New York: John Wiley and Sons Inc.Google Scholar
  23. 23.
    Lee, L. H. C. (1997). Convolutional Coding: Fundamentals and Applications. London: Artech House.MATHGoogle Scholar
  24. 24.
    Sklar, B. (2001). Digital Communications, Fundamental and Applications. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
  25. 25.
    Martinez, J. L., Weerakkody, W. A. R. J., Fernando, F., & Kondoz, A. M. (2008). Turbo trellis coded modulation for transform domain distributed video coding. Electronics Letters. 44(15), 899–900.CrossRefGoogle Scholar
  26. 26.
    Odabasioglu, N., Ucan, O. N., & Hekim, Y. (2005). Multilevel turbo coded-continuous phase frequency shift keying (MLTC-CPFSK) over satellite channels in space communication. Proceedings of 2nd IEEE International Conference on Recent Advances in Space Technologies Istanbul, Turkey.Google Scholar
  27. 27.
    Hayes, J. K. (1968). Adaptive feedback communications. IEEE Transactions on Communications. 16(1), 29–34.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Viterbi, A. J. (1995). CDMA principles of Spread-Spectrum Communications. Reading, MA: Addison-Wesley.Google Scholar
  29. 29.
    Adachi, F., Sawahashi, M., & Suda, A. (1998). Wideband DS-CDMA for next generation mobile communication systems. IEEE Communications Magazine. 36(9), 56–69.CrossRefGoogle Scholar
  30. 30.
    Ibnkahla, M., ed. (2004). Signal Processing for Mobile Communications Hand Book. Boca Raton, FL: CRC Press.Google Scholar
  31. 31.
    Viterbi, A. J. et al. (1994). Soft handoff extends CDMA cell coverage and increases reverse link capacity. IEEE Journals on the Selected Areas in Communications. 12(8), 1281–1288.CrossRefGoogle Scholar
  32. 32.
    Evans, J. V. (1998). Satellite systems for personal communications. Proceedings of the IEEE. 86(7), 1325–1341.CrossRefGoogle Scholar
  33. 33.
    Sari, H., & Karama, G. (1998). Orthogonal frequency-division multiple access and its application to CATV networks. European Transactions on Communications. 9(6), 507–516.Google Scholar
  34. 34.
    ETSI EN standard 301–958 (2001). Interaction Channel for Digital Terrestrial Television (RCT) Incorporating Multiple Access OFDM. European Telecommunications Standards InstituteGoogle Scholar
  35. 35.
    IEEE P802.16a/D3-2001 (Draft Amendment to IEEE P802.16a/D3-2001, 2002). IDraft Amendment to IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems-Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2–11 GHz. Google Scholar
  36. 36.
    Koutsopoulos, I., & Tassiulas, L. (2008). The impact of space division multiplexing on resource allocation: a unified treatment of TDMA, OFDMA and CDMA. IEEE Transactions on Communications. 56(2), 260–269.CrossRefGoogle Scholar
  37. 37.
    Morelli, M., Kuo, C. C. J., & Pun, M. (2007). Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proceedings of the IEEE. 95(7), 1394–1427.CrossRefGoogle Scholar
  38. 38.
    GPP TS 36. 300 (2007). Evolved Universal Terrestial Radio Access (E-UTRA) and Evolved Universal Terrestial Radio Access Network (E-UTRAN); Overall Description: Stage 2. Relesase 8, V 8.0.0.Google Scholar
  39. 39.
    Ekstrom, H., Furuska, A., Karlsson, J., Meyer, M., Parkvall, S., Torsner, J., & Wahlquist, M. (2006). Technical solutions for the 3G long-term evolution. IEEE Communications Magazine. 44(3), 38–45.CrossRefGoogle Scholar
  40. 40.
    Rappaport, T. S. (2002). Wireless Communications, Principles and Practice. Upper Saddle River, NJ: Prentice-Hall, Inc.Google Scholar
  41. 41.
    Hewlett Packard Co. (1997). Digital Modulation in Communications Systems – An Introduction, Application Note 1298. Google Scholar
  42. 42.
    Eng, T., & Milstein, L. B. (1993). Capacities of Hybrid FDMA/CDMA systems in multipath fading. IEEE MILCOM Conference Records. San Diego, CA.Google Scholar
  43. 43.
    Dixon, R. C.(1994). Spread Spectrum Systems with Commercial Applications. 3rd ed. New York: John Wiley and Sons Inc.Google Scholar
  44. 44.
    Skold, B. J., & Ugland, J. K. (1992). A comparison of CDMA and TDMA systems. Proceedings of the 42nd IEEE VTC. Denver, CO.Google Scholar
  45. 45.
    Rahman, Q. M., Sesay, A. B., & Hefnawi, M. (2004). Two-stage maximum likelihood estimation (TSMLE) For MT-CDMA signals. URASIP Journal on Wireless Communications and Networking. 2004(1), 55–66.MATHCrossRefGoogle Scholar
  46. 46.
    Vandendorpe, L. (1993). Multitone direct sequence CDMA system in an indoor wireless environment. Proceedings of IEEE First Symposium of Communications and Vehicular Technology. Delft, The Netherlands.Google Scholar
  47. 47.
    Fazel, K., & Papke, L.(1993). On the performance of convolutionally-coded CDMA/OFDM for mobile communication system. Proceedings of IEEE PIMRC. Yokohama, Japan.Google Scholar
  48. 48.
    Yee, N., Linnartz, J. P., & Fettweis, G. (1993). Multicarrier CDMA in indoor wireless radio networks. Proceedings of IEEE PIMRC. Yokohama, Japan.Google Scholar
  49. 49.
    Chouly, A., Brajal, A., & Jourdan, S. (1993). Orthogonal multicarrier techniques applied to direct sequence spread spectrum CDMA systems. Proceedings of IEEE GLOBECOM. Houston, TX.Google Scholar
  50. 50.
    DaSilva, V., & Sousa, E. S. (1993). Performance of orthogonal CDMA codes for quasi-synchronous communication systems. Proceedings of IEEE ICUPC. Ottawa, Canada.Google Scholar
  51. 51.
    Kaiser, S. (2008). Rate adaptation with CDM versus adaptive coding for next generation OFDM systems. IEEE Vehicular Technology Conference. Marina Bay, Singapore.Google Scholar
  52. 52.
    Popovic, D., & Popovic, Z. (2002). Multibeam antennas with polarization and angle diversity. IEEE Transactions on Antennas and Propagation. 50(5), 651–657.CrossRefGoogle Scholar
  53. 53.
    Vaughan, R. G.(1990). Polarization diversity in mobile communications. IEEE Transactions on Vehicular Technologies. 39(3), 177–186.CrossRefGoogle Scholar
  54. 54.
    Clark, M. V., Greenstein, L. J., &Shafi, M. (1992). MMSE diversity combining for wideband digital cellular radio. IEEE Transactions on Communications. 40(6), 1128–1135.CrossRefGoogle Scholar
  55. 55.
    Jakes, W. C.(1974). Microwave Mobile Communications. New York: John Wiley and Sons Inc.Google Scholar
  56. 56.
    Dala, U. D., Kosta, Y. P., & Dasguta, K. S. (2007). Study of issues related to adaptive channel estimation in OFDM system-MWBA aspects. Third International Conference on Wireless Communication and Sensor Networks. India.Google Scholar
  57. 57.
    Ibnkahla, M., Rahman, Q. M., et al. (2004). Satellite mobile communications: technologies and challenges. Proceedings of the IEEE. 92(2), 312–339.CrossRefGoogle Scholar
  58. 58.
    Al-Asady, H., Rahman, Q. M., & Ibnkahla, M. (2004). Signaling constellations for transmission over nonlinear channels. Chapter VII: Signal Processing for Mobile Communications Handbook. Boca Raton: CRC Press.Google Scholar
  59. 59.
    Thenmozhi, K., & Prithiviraj, V. (2007). Suitability of coded orthogonal frequency division multiplexing (COFDM) for multimedia data transmission in wireless telemedicine applications. International Conference on Computational Intelligence and Multimedia Applications. Sivakasi, India.Google Scholar
  60. 60.
    Vaughan-Nichols, S. J. (2002). OFDM: back to the wireless future. Computer. 35(12), 19–21.CrossRefGoogle Scholar
  61. 61.
    Sampei, S., & Harada, H. (2007). System design issues and performance evaluations for adaptive modulation in new wireless access systems. Proceedings of the IEEE. 95(2), 2456–2471.CrossRefGoogle Scholar
  62. 62.
    Catreus, S., Erceg, V., Gesbert, D., & Heath, R. W. (2007). Adaptive modulation and MIMO coding for broadband wireless data networks. IEEE Communications Magazine. 40(6), 108–115.CrossRefGoogle Scholar
  63. 63.
    Classon, B., et al. (2002). Channel coding for 4G systems with adaptive modulation and coding. IEEE Wireless Communications. 9(2), 8–13.CrossRefGoogle Scholar
  64. 64.
    Koca, M., & Levy, B. C. (2004). Turbo space-time equalization of TCM for broadband wireless channels. IEEE Transactions on Wireless Communications. 3(1), 50–59.CrossRefGoogle Scholar
  65. 65.
    Sternad, M., Svensson, T., Ottosson, T., Svensson, A., & Brunstrom, A. (2007). Towards systems beyond 3G based on adaptive OFDMA transmission. Proceedings of the IEEE. 95(12), 2432–2455.CrossRefGoogle Scholar
  66. 66.
    Wei, Z., Xia, X., & Letaief, K. B. (2007). Space-time/frequency coding for MIMO-OFDM in next generation broadband wireless systems. IEEE Wireless Communications. 14(3), 32–43.CrossRefGoogle Scholar
  67. 67.
    Stuber, G. L., Barry, J. R., McLaughlin, S. W., Li, Y., Ingram, M. A., & Pratt, T. G. (2004). Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE. 92(2), 271–294.CrossRefGoogle Scholar
  68. 68.
    Doufexi, A., et al. (2002). COFDM performance evaluation in outdoor MIMO channel using space/polarization-time processing techniques. Electronics Letters. 38(25), 1720–1721.CrossRefGoogle Scholar
  69. 69.
    Borgmann, M., & Bolcskei, H. (2005). Noncoherent space-frequency coded MIMO-OFDM. IEEE Journal on Selected Areas in Communications. 23(9), 1799–1810.CrossRefGoogle Scholar
  70. 70.
    Wang, X., Li, Y., & Wei, J. (2007). Noncoherent sequence detection of differential space-frequency modulation MIMO-OFDM. IEEE 8th Workshop on Signal Processing Advances in Wireless Communications. Helsinki, Finland.Google Scholar
  71. 71.
    Rahman, Q. M., & Sesay, A. B. (2003). Non-coherent MT-CDMA system with post-detection diversity combining. Canadian Journal on Electrical and Computer Engineering. 23(2), 81–88.CrossRefGoogle Scholar
  72. 72.
    Lee, K. F., & Williams, D. B. (2000). A space-frequency transmitter diversity technique for OFDM systems. Proceedings of IEEE Global Commununications Conference. San Francisco, CA.Google Scholar
  73. 73.
    Goldsmith, A., Jafar, S., Jindal, N., & Vishawnath, S. (2003). Capacity limits of MIMO channels. CIEEE Journal on Selected areas in Communications. 21(5), 684–702.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of Western OntarioLondonCanada N6A 5B8

Personalised recommendations