Advertisement

Radio-over-Fiber (RoF) Networks

  • John E. Mitchell
Chapter
Part of the Optical Networks book series (OPNW)

Abstract

As the bitrates required by wireless services increase and consideration starts to shift to higher carrier frequencies the distribution of radio signals over optical fibers becomes attractive for both antenna remoting in pico-cellular applications as well as for providing more complex radio backhaul network topologies. This chapter outlines the basic structure of a radio-over-fiber (RoF) link and details some of the technology and architectural options. It continues to look at the radio applications considering some of the issues faced as well as current solutions.

Keywords

Orthogonal Frequency Division Multiplex Medium Access Control Radio Signal Time Division Multiple Access Orthogonal Frequency Division Multiplex Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen Telecom’s Radio-over-Fiber Technology Powers Mobile Communications at Sydney 2000 Olympics Fiber Optics Business, Nov. 15, 2000 http://findarticles.com/p/articles/mi_m0IGK/is_21_14/ai_73843087 [Online on March 25, 2008].
  2. 2.
    D. Wake, D. Johansson, and D. G. Moodie, “Passive Picocell: A New Concept in Wireless Network Infrastructure,” IEE Electronics Letters, vol. 33, no. 5, pp. 404–406, Feb. 1997.CrossRefGoogle Scholar
  3. 3.
    L. Westbrook, D. G. Moodie, “Simultaneous Bi-directional Analogue Fibre-optic Transmission Using an Electroabsorption Modulator,” IEE Electronics Letters, vol. 32, no. 19, pp. 1806–1807, Sep. 1996.CrossRefGoogle Scholar
  4. 4.
    C. P. Liu et al., “High-speed 1.56 μm Multiple Quantum Well Asymmetric Fabry-Perot Modulator/Detector (AFPMD) for Radio-over-Fiber Applications,” in Proc., International Topical Meeting Microwave Photonics, 2005.Google Scholar
  5. 5.
    H. Pfrommer et al., “Full-duplex DOCSIS/WirelessDOCSIS Fiber-radio Network Employing Packaged AFPM-based Base Stations,” IEEE Photonics Technology Letters, vol. 18, no. 2, pp. 406–408, Jan. 2006.CrossRefGoogle Scholar
  6. 6.
    A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved Performance of a Hybrid Radio/Fiber System Using a Directly Modulated Laser Transmitter with External Injection,” IEEE Photonics Technology Letters, vol. 14, no. 2, pp. 233–235, Feb. 2002.CrossRefGoogle Scholar
  7. 7.
    K. Asatani, “Nonlinearity and Its Compensation of Semiconductor Laser Diodes for Analog Intensity Modulation Systems,” IEEE Transactions on Communications, vol. 28, no. 2, pp. 297–300, Feb. 1980.CrossRefGoogle Scholar
  8. 8.
    H. Lin and Y. Kao, “Nonlinear Distortion and Compensations of DFB Laser Diode in AMVSB Lightwave CATV Applications,” IEEE/OSA Journal of Lightwave Technology, vol. 14, no. 11, pp. 2567–2574, Nov. 1996.CrossRefGoogle Scholar
  9. 9.
    G. E. Betts and F. J. O’Donnell, “Optical Analog Link Using a Linearized Modulator,” in Proc., IEEE Lasers and Electro-Optics Society Annual Meeting, vol. 2, pp. 278–279, 1994.Google Scholar
  10. 10.
    T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-Dynamic-Range Wireless-Over-Fiber Link Using Feedforward Linearization,” IEEE/OSA Journal of Lightwave Technology, vol. 25, no. 11, pp. 3274–3282, Nov. 2007.CrossRefGoogle Scholar
  11. 11.
    C. H. Cox, “Analog Optical Links: Theory and Practice,” Cambridge University Press, Cambridge 2004.MATHGoogle Scholar
  12. 12.
    G. Betts, L. M. Johnson, C. H. Cox, and S. D. Lowney, “High-performance Optical Analog Link Using External Modulator,” IEEE Photonics Technology Letters, vol. 1, no. 11, pp. 404–406, Nov. 1989.CrossRefGoogle Scholar
  13. 13.
    C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the Performance of RF-over-Fiber Links and their Impact on Device Design,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no.2, pp. 906–920, Feb. 2006.CrossRefGoogle Scholar
  14. 14.
    U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic Dispersion in Fibre Optic Microwave and Millimetre Wave Links,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1716–1724, Oct. 1996.CrossRefGoogle Scholar
  15. 15.
    S. Kawanishi et al., “Wideband Frequency Measurement of Optical Receivers Using Optical Heterodyne Detection,” IEEE/OSA Journal of Lightwave Technology, vol. 7, no. 1, pp. 1242–1243, Jan. 1989.CrossRefGoogle Scholar
  16. 16.
    R. T. Ramos and A. J. Seeds, “Fast Heterodyne Optical Phase-lock Loop Using Double Quantum Well Laser Diodes,” IEE Electronics Letters, vol. 28, no. 1, pp. 82–83, Jan. 1992.CrossRefGoogle Scholar
  17. 17.
    R. A. Griffin and K. Kitayama, “Optical Millimetre-wave Generation with High Spectral Purity Using Feed Forward Optical Field Modulation,” IEE Electronics Letters, vol. 34, no. 8, pp. 795–796, April 1998.CrossRefGoogle Scholar
  18. 18.
    L. Noel, D. Marcenac, and D. Wake, “120 Mbit/s QPSK Radio Fibre Transmission over 100 Km of Standard Fibre at 60 GHz Using a Master Slave Injection Locked DFB Laser Source,” IEE Electronics Letters, vol. 32, no. 20, pp. 1895–1897, Sep. 1996.CrossRefGoogle Scholar
  19. 19.
    L. A. Johansson, D. Wake, and A. J. Seeds, “Millimetre-wave over Fibre Transmission Using a BPSK Reference-modulated Optical Injection Phase-lock Loop,” in Proc., Optical Fiber Communication conference, vol. 3, paper WV3-1, 2001.Google Scholar
  20. 20.
    G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming Chromatic Dispersion Effects in Fiber-wireless Systems Incorporating External Modulators,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, no. 8, pp. 1410–1415, Aug. 1997.CrossRefGoogle Scholar
  21. 21.
    J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the Fibre Chromatic Dispersion Penalty on 1550 nm Millimetre Wave Optical Transmission,” IEE Electronics Letters, vol. 33, no. 6, pp. 512–513, March 1997.CrossRefGoogle Scholar
  22. 22.
    J. Conradi, B. Davies, M. Sieben, D. Dodds, and S. Walklin, “Optical Single Sideband (OSSB) Transmission for Dispersion Avoidance and Electrical Dispersion Compensation in Microwave Subcarrier and Baseband Digital Systems,” post deadline paper presented at the Optical Fiber Communications (OFC) conference, Dallas, TX, Feb. 1997.Google Scholar
  23. 23.
    E. Vergnol, J. F. Cadiou, A. Carenco, and C. Kazmierski, “New Modulation Scheme for Integrated Single Side Band Lightwave Source Allowing Fiber Transport up to 256 QAM over 38 GHz Carrier,” in Proc., Optical Fiber Communications (OFC) conference, vol. 4, pp. 134–136, 2000.Google Scholar
  24. 24.
    J. J. O’Reilly, P. M. Lane, R. Heidermann, and R. Hofstetter, “Optical Generation of Very Narrow Linewidth Millimetre Wave Signals,” IEE Electronics Letters, vol. 28, no. 25, pp. 2309–2311, Dec. 1992.Google Scholar
  25. 25.
    J. J. O’Reilly and P. M. Lane, “Fibre Supported Optical Generation and Delivery of 60 GHz Signals,” IEE Electronics Letters, vol. 30, no. 16, pp. 1329–1330, Aug. 1994.CrossRefGoogle Scholar
  26. 26.
    J. E. Mitchell, “Simultaneous Up-conversion of Multiple Wavelengths to 18 GHz and 36 GHz Using 4-f Technique and Optical Filtering,” in Proc., International Topical Meeting on Microwave Photonics, paper W.4.3, 2006.Google Scholar
  27. 27.
    M. Sauer, K. Kojucharow, H. Kaluzni, D. Sommer, and W. Nowak, “Simultaneous Electro-optical Upconversion to 60 GHz of Uncoded OFDM Signals,” in Proc., International Topical Meeting on Microwave Photonics, pp. 219–222, 2006.Google Scholar
  28. 28.
    R. A. Griffin, P. M. Lane, and J. J. O’Reilly, “Radio over Fibre Distribution Using an Optical Millimetre Wave/DWDM Overlay,” in Proc., Optical Fiber Communications (OFC) conference, paper WD6, 1999.Google Scholar
  29. 29.
    A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, “Optical Interfaces without Light Sources for Base Station Designs in Fiber Wireless Systems Incorporating WDM,” in Proc., International Topical Meeting on Microwave Photonics, pp. 119–122, 1999.Google Scholar
  30. 30.
    G. H. Smith and D. Novak, “Broadband Millimetre Wave Fibre Radio Network Incorporating Remote Up/downconversion,” in Proc., IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1509–1512, 1998.Google Scholar
  31. 31.
    R. A. Griffin, H. M. Salgado, P. M. Lane, and J. J. O’Reilly, “System Capacity for Millimeter Wave Radio over Fiber Distribution Employing an Optically Supported PLL,” IEEE/OSA Journal of Lightwave Technology, vol. 17, no. 12, pp. 2480–2487, Dec. 1999.CrossRefGoogle Scholar
  32. 32.
    T. Ismail, C.-P. Liu, J. E. Mitchell, A. J. Seeds, X. Qian, A. Wonfor, R. V. Penty, and I. H. White, “Transmission of 37.6 GHz QPSK Wireless Data Over 12.8-km Fiber with Remote Millimeter-Wave Local Oscillator Delivery Using a Bi-directional SOA in a Full-duplex System with 2.2-km CWDM Fiber Ring Architecture,” IEEE Photonics Technology Letters, vol. 17, no. 9, pp. 1989–1991, Sept. 2005.CrossRefGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
  36. 36.
  37. 37.
    R. E. Schuh, “Hybrid Fiber Radio for Second and Third Generation Wireless Systems,” in Proc., International Topical Meeting on Microwave Photonics, pp. 213–216, 1999.Google Scholar
  38. 38.
    R. Yuen and X. N. Fernando, “Enhanced Wireless Hotspot Downlink Supporting IEEE 802.11 and WCDMA,” in Proc., IEEE International Symposium on Personal, Indoor Mobile Radio Communications, pp. 1–6, 2006.Google Scholar
  39. 39.
    L. Roselli, V. Borgioni, F. Zepparelli, F. Ambrosi, M. Comez, P. Faccin, and A. Casini, “Analog Laser Predistortion for Multiservice Radio-over-Fiber Systems,” IEEE/OSA Journal of Lightwave Technology, vol. 21, no. 5, pp. 1211–1223, May 2003.CrossRefGoogle Scholar
  40. 40.
    Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-Over-Fiber,” in Proc., IEEE Lasers & Electro-Optics Society Annual Meeting, pp. 518–519, 2006.Google Scholar
  41. 41.
    M. L. Yee, V. H. Pham, Y. X. Guo, L. C. Ong, and B. Luo, “Performance Evaluation of MB-OFDM Ultra-Wideband Signals over Single Mode Fiber,” in Proc., IEEE International Conference on Ultra-Wideband, pp. 674–677, 2007.Google Scholar
  42. 42.
    C. K. Sim, M. L. Yee, B. Luo, L. C. Ong, and M. Y. W. Chia, “Performance Evaluation for Wireless LAN, Ethernet and UWB Coexistence on Hybrid Radio-over-Fiber Picocells,” in Proc., Optical Fiber Communication (OFC) conference, 2005.Google Scholar
  43. 43.
    C. Wang, F. Zeng, and J. Yao, “All-Fiber Ultrawideband Pulse Generation based on Spectral Shaping and Dispersion-Induced Frequency-to-Time Conversion,” IEEE Photonics Techno-logy Letters, vol. 19, no. 3, pp. 137–139, Feb. 2007.CrossRefGoogle Scholar
  44. 44.
    M. L. Yee, H. L. Chung, P. K. Tang, L. C. Ong, B. Luo, M. T. Zhou, Z. Shao, and M. Fujise, “Radio-over-Fiber EVM Measurements for IEEE 802.11 g WLAN and Cellular Signal Distribution,” in Proc., European Microwave Conference, pp. 882–885, 2006.Google Scholar
  45. 45.
    M. J. Crisp, L. Shen, A. Wonfor, R. V. Penty, and I. H. White, “Demonstration of a Radio over Fibre Distributed Antenna Network for Combined In-building WLAN and 3 G Coverage,” in Proc., Optical Fiber Communication (OFC) conference, pp. 1–3, 2007.Google Scholar
  46. 46.
    S. M. Redl, M. K. Weber, and M. W. Oliphant, “GSM and Personal Communications Handbook,” Artech House, 1998.Google Scholar
  47. 47.
    The 3rd Generation Partnership Project (3GPP), http://www.3gpp.org/
  48. 48.
    IEEE Std 802.11 b-1999 (R2003) Higher-Speed Physical Layer Extension in the 2.4 GHz Band, http://standards.ieee.org/getieee802/download/802.11b-1999.pdf [Online on March 25, 2008].
  49. 49.
    IEEE Std 802.11 a-1999 High-speed Physical Layer in the 5 GHz band, http://standards.ieee.org/getieee802/download/802.11 a-1999.pdf [Online on March 25, 2008].
  50. 50.
    IEEE Std 802.11 g-2003: Further Higher Data Rate Extension in the 2.4 GHz Band, http://standards.ieee.org/getieee802/download/802.11 g-2003.pdf [Online on March 25, 2008].
  51. 51.
    IEEE 802.11 Task Group N, Project Status Reports, http://grouper.ieee.org/groups/802/11/Reports/tgn_update.htm [Online on March 25, 2008].
  52. 52.
    IEEE Std 802.16-2004 Air Interface for Fixed Broadband Wireless Access Systems http://standards.ieee.org/getieee802/download/802.16-2004.pdf [Online on March 25, 2008].
  53. 53.
    IEEE Std 802.16e-2005 Air Interface for Fixed Broadband Wireless Access Systems – Amendment 2, http://standards.ieee.org/getieee802/download/802.16e-2005.pdf [Online on March 25, 2008].
  54. 54.
    WiMedia Alliance, http://www.wimedia.org [Online on March 25, 2008].
  55. 55.
    UTRA-UTRAN Long Term Evolution (LTE), http://www.3gpp.org/Highlights/LTE/LTE.htm [Online on March 25, 2008].
  56. 56.
    M. R. D. Rodrigues and J. J. O’Reilly, “An Analytic Technique to Assess the Impact of Nonlinearities on the Error Probability of OFDM Signals in RoF based Wireless Networks,” in Proc., IEEE International Symposium on Information Theory, p. 316, 2001.Google Scholar
  57. 57.
    I. Kostko, M. E. M. Pasandi, M. M. Sisto, S. LaRochelle, L. A. Rusch, and D. V. Plant, “A Radio-over-Fiber Link for OFDM Transmission without RF Amplification,” in Proc., Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007.Google Scholar
  58. 58.
    M. Sauer, A. Kobyakov, and A. B. Rubin, “Radio-over-Fiber Transmission with Mitigated Stimulated Brillouin Scattering,” IEEE Photonics Technology Letters, vol. 19, no. 19, pp. 1487–1489, Oct. 2007.CrossRefGoogle Scholar
  59. 59.
    J. E. Mitchell, “Performance of OFDM at 5.8 GHz Using Radio over Fibre Link,” IEE Electronics Letters, vol. 40, no. 21, pp. 1353–1354, Oct. 2004.CrossRefGoogle Scholar
  60. 60.
    J. B. Song and A. H. M. R. Islam, “Distortion of OFDM Signals on Radio-over-Fiber Links Integrated with an RF Amplifier and Active/Passive Electroabsorption Modulators,” IEEE/OSA Journal of Lightwave Technology, vol. 26, no. 5, pp. 467–477, March 2008.CrossRefGoogle Scholar
  61. 61.
    T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “Feed-forward LInearised Uncooled DFB Laser in a Multi-channel Broadband Wireless over Fibre Transmission at 5.8 GHz,” in Proc., International Topical Meeting on Microwave Photonics, pp. 115–118, 2005.Google Scholar
  62. 62.
    B. Kalantarisabet and J. E. Mitchell, “MAC Constraints on the Distribution of 802.11 Using Optical Fibre,” in Proc., European Conference on Wireless Technology, pp. 238–240, 2006.Google Scholar
  63. 63.
    ITU-T Recommendation G.983.3 – A broadband optical access system with increased service capability by wavelength allocation.Google Scholar
  64. 64.
    A. M. J. Koonen et al., “Re-configurable Broadband Fibre Wireless Network Employing Dynamic Wavelength Allocation,” in Proc., European Conference on Optical Communication, pp. 577–578, 1998.Google Scholar
  65. 65.
    M. Sauer, A. Kobyakov, and J. George, “Radio Over Fiber for Picocellular Network Architectures,” IEEE/OSA Journal of Lightwave Technology, vol. 25, no. 11, pp. 3301–3320, Nov. 2007.CrossRefGoogle Scholar
  66. 66.
    J. C. Attard and J. E. Mitchell, “Optical Network Architectures for Dynamic Reconfiguration of Full Duplex, Multiwavelength, Radio Over Fiber,” OSA Journal of Optical Networking, vol. 5, no. 6, pp. 435–444, June 2006.CrossRefGoogle Scholar
  67. 67.
    J. J. Vegas Olmos, T. Kuri, and K. Kitayama, “Dynamic Reconfigurable WDM 60-GHz Millimeter-Waveband Radio-Over-Fiber Access Network: Architectural Considerations and Experiment,” IEEE/OSA Journal of Lightwave Technology, vol. 25, no. 11, pp. 3374–3380, Nov. 2007.CrossRefGoogle Scholar
  68. 68.
    J. J. Huang, F. Q. Shan, and J. Z. She, “A Novel Multiband and Broadband Fractal Patch Antenna,” in Proc., Progress in Electromagnetics Research Symposium, 2006.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Electronic and Electrical EngineeringUniversity College LondonLondonUK

Personalised recommendations