Signal Processing Techniques for Data Confidentiality in OCDMA Access Networks

  • Yue-Kai Huang
  • Paul Toliver
  • Paul R. Prucnal
Part of the Optical Networks book series (OPNW)


This chapter focuses on several imminent security applications in optical CDMA networks where the strong potentials of optical signal processing could be leveraged. As one of the dominant technologies in wireless communications, the unique features of CDMA have attracted wide attention in many optical network-ing areas. We explored the security properties of optical CDMA networks enhanced by the aid of optical signal processing. In particular, optical encryption can be incorporated into the network through optical XOR gating. Steganography, another form of information hiding, can also be achieved through temporal pulse spreading. For a coherent spectral phase-coded OCDMA network, share code scrambling is proven to be an effective and reliable way of achieving channel confidentiality. The chapter also presents a cost-effective and robust device technology. Its small footprint and multi-code processing capability could significantly simplify the node and system architecture.


Phase Mask Spectral Phase Optical Encryption Optical Code Division Multiple Access Optical Signal Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Prucnal, Optical code division multiple access: Fundamentals and applications, New York: Taylor and Francis, 2006.Google Scholar
  2. 2.
    K. I. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON – solution path to gigabit-symmetric FTTH,” J. Lightwav. Technol., vol. 24, no. 4, pp. 1654–1662, Apr. 2006.CrossRefGoogle Scholar
  3. 3.
    A. J. Viterbi, “Spread spectrum communications – Myths and realities,” IEEE Commun. Mag., vol. 17, no. 3, pp. 11–18, May 1979.CrossRefGoogle Scholar
  4. 4.
    T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Light-wav. Technol., vol. 23, no. 2, pp. 655 (2005).CrossRefGoogle Scholar
  5. 5.
    R. C. Menendez, P. Toliver, S. Galli, A. Agarwal, T. Banwell, J. Jackel, J. Young, and S. Etemad, “Network applications of cascaded passive code translation for WDM-compatible spectrally phase-encoded optical CDMA”, J. Lightwav. Technol. 23, pp. 3219–3231 (2005).CrossRefGoogle Scholar
  6. 6.
    C.E. Shannon, Bell Sys. Tech. J., 1949, vol. 28, pp. 656–715.MATHMathSciNetGoogle Scholar
  7. 7.
    I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, “Design and demonstration of a novel Optical CDMA platform for avionics applications,” Opt. Comm., vol. 271, no. 1, pp. 65–70 (2007).CrossRefGoogle Scholar
  8. 8.
    L. Tanceski and I. Andonovic, “Wavelength Hopping/Time Spreading Code Division Mul-tiple Access Systems,” Electron. Lett., vol. 30, no. 9, pp. 721–723, 1994.Google Scholar
  9. 9.
    C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoher-ent OCDMA system using supercontinuum generation and optical time gating;” IEEE Pho-ton. Technol. Lett., vol. 18, no. 7, pp. 889–891, Apr. 2006.CrossRefGoogle Scholar
  10. 10.
    J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demulti-plexer (TOAD),” IEEE Photon. Technol. Lett., vol. 5, pp. 787–789 (1993)CrossRefGoogle Scholar
  11. 11.
    T. S. El-Bawab, Optical switching, New York: Springer, 2006.CrossRefGoogle Scholar
  12. 12.
    T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Giardin, G. Guekos, R. Dall’Ara, S. Hansmann, and Burkhard, “All-optical XOR in a SOA-assisted fiber sagnac gate,” IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 334–336 (1999).Google Scholar
  13. 13.
    P. Moulin and J. A. O’Sullivan, “Information- theoretic analysis of information hiding,” IEEE Trans. Inform. Theory vol. 49, pp. 563–593 (2003).MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Tech. Lett., vol. 18, pp. 1870–1872, Sept. 2006.CrossRefGoogle Scholar
  15. 15.
    J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwav. Technol., vol. 8, no.3, pp. 478–491 (1990).CrossRefGoogle Scholar
  16. 16.
    Y.-K. Huang, B. Wu, I. Glesk, E.E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplex-ing techniques,” Electron. Lett., vol 43, no. 25, pp. 1449–1451 (2007).Google Scholar
  17. 17.
    A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett., vol. 13, pp. 300–302, 1988.Google Scholar
  18. 18.
    J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access,” IEEE J. Select. Top. Quant. Electr., vol. 13, pp. 1351–1369, 2007.CrossRefGoogle Scholar
  19. 19.
    S. Etemad, T. Banwell, S. Galli, J. Jackel, R. Menendez, P. Toliver, J. Young, P. Delfyett, C. Price, and T. Turpin, “Optical-CDMA incorporating phase coding of coherent frequency bins: concept, simulation, experiment,” Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, 2004.Google Scholar
  20. 20.
    P. Toliver, J. Young, J. Jackel, T. Banwell, R. Menendez, S. Galli, and S. Etemad, “Optical network compatibility demonstration of O-CDMA based on hyperfine Spectral Phase Cod-ing,” LEOS 2004, Paper WE3, Puerto Rico, 2004.Google Scholar
  21. 21.
    B. J. Wysocki, T. A. Wysocki, “Modified Walsh-Hadamard sequences for DS CDMA wire-less systems,” Int. J. Adapt. Control Signal Process., vol. 16, pp. 589–602, 2002.MATHCrossRefGoogle Scholar
  22. 22.
    A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Lit-tle, S. T. Chu, C. Wei, C. Wenlu, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” J. Lightw. Technol., vol. 24, no. 1, pp. 77–87, Jan. 2006.CrossRefGoogle Scholar
  23. 23.
    A. Agarwal, R. Menendez, P. Toliver, S. Etemad, and J. Jackel, “Code scrambling in spec-tral phase encoded OCDMA using reconfigurable integrated ring resonator based cod-ers,” Optical Amplifiers and Applications/Coherent Optical Technologies and Applications (OAA/COTA), Paper CFD4, Whistler, Canada, 2006.Google Scholar
  24. 24.
    A. Agarwal, R. Menendez, P. Toliver, J. Jackel, and S. Etemad, “Enhanced confidentiality with multi-level phase scrambling in SPE-OCDMA,” Conference on Lasers and Electro-optics, paper CThBB2, Baltimore, MD, 2007.Google Scholar
  25. 25.
    A. Agarwal, R. Menendez, P. Toliver, J. Jackel, and S. Etemad, “Demonstration of modified hadamard codes for OCDM-based confidentiality,” Proc. European Conf. Opt. Commun., paper 10.5.6, Berlin, Germany, 2007.Google Scholar
  26. 26.
    X. Wang, N. Wada, T. Miyazaki, and K. Kitayama, “Coherent OCDMA system using DPSK data format with balanced detection,” IEEE Photon. Technol. Lett., vol. 18, no. 7, pp.826–828, April 2006.CrossRefGoogle Scholar
  27. 27.
    P. Toliver, A. Agarwal, T. Banwell, R. Menendez, J. Jackel, and S. Etemad, “40 Gb/s OCDM-based signal transmission over 400 km using integrated micro-ring resonator-based spec-tral phase encoding and quaternary code scrambling for enhanced data confidentiality,” Proc.European Conf. Opt. Commun., paper PDP3.3, Berlin, Germany, 2007.Google Scholar
  28. 28.
    D. Iazikov, C. M. Greiner, T. W. Mossberg, “Integrated holographic filters for flat-passband optical multiplexers,” Opt. Expr., vol. 14, p. 3497, 2006.CrossRefGoogle Scholar
  29. 29.
    E. Narimanov, W. C. Kwong, G.-C. Yang, and P. R. Prucnal, “Shifted carrier-hopping prime codes for multicode keying in wavelength-time O-CDMA”, IEEE Trans. Commun., vol. 53, no. 12, pp. 2150–2156, Dec. 2005.CrossRefGoogle Scholar
  30. 30.
    “Optical CDMA Code Wavelength Conversion using PPLN to Improve Tramission Security,” IEEE Photon. Tech. Lett., Vol 21, No.6, PP 383–385, Mar. 2009Google Scholar
  31. 32.
    K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all- optical thresholder and its applications for OCDMA,” Opt. Expr., 15(20), p. 13114, Oct. 2007.CrossRefGoogle Scholar
  32. 33.
    Z. Wang, A. Chowdhury, and P. R. Prucnal, “OCDMA code wavelength-domain conver- sion using PPLN waveguide for transmission security,” submitted to IEEE Photon. Tech. Lett.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.NEC Laboratories America, Inc.PrincetonUSA
  2. 2.Telcordia TechnologiesRed BankUSA
  3. 3.Department of Electrical EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations