Skip to main content

Signal Processing Techniques for Data Confidentiality in OCDMA Access Networks

  • Chapter
  • First Online:
Broadband Access Networks

Part of the book series: Optical Networks ((OPNW))

  • 920 Accesses

Abstract

This chapter focuses on several imminent security applications in optical CDMA networks where the strong potentials of optical signal processing could be leveraged. As one of the dominant technologies in wireless communications, the unique features of CDMA have attracted wide attention in many optical network-ing areas. We explored the security properties of optical CDMA networks enhanced by the aid of optical signal processing. In particular, optical encryption can be incorporated into the network through optical XOR gating. Steganography, another form of information hiding, can also be achieved through temporal pulse spreading. For a coherent spectral phase-coded OCDMA network, share code scrambling is proven to be an effective and reliable way of achieving channel confidentiality. The chapter also presents a cost-effective and robust device technology. Its small footprint and multi-code processing capability could significantly simplify the node and system architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. R. Prucnal, Optical code division multiple access: Fundamentals and applications, New York: Taylor and Francis, 2006.

    Google Scholar 

  2. K. I. Kitayama, X. Wang, and N. Wada, “OCDMA over WDM PON – solution path to gigabit-symmetric FTTH,” J. Lightwav. Technol., vol. 24, no. 4, pp. 1654–1662, Apr. 2006.

    Article  Google Scholar 

  3. A. J. Viterbi, “Spread spectrum communications – Myths and realities,” IEEE Commun. Mag., vol. 17, no. 3, pp. 11–18, May 1979.

    Article  Google Scholar 

  4. T. H. Shake, “Security performance of optical CDMA against eavesdropping,” J. Light-wav. Technol., vol. 23, no. 2, pp. 655 (2005).

    Article  Google Scholar 

  5. R. C. Menendez, P. Toliver, S. Galli, A. Agarwal, T. Banwell, J. Jackel, J. Young, and S. Etemad, “Network applications of cascaded passive code translation for WDM-compatible spectrally phase-encoded optical CDMA”, J. Lightwav. Technol. 23, pp. 3219–3231 (2005).

    Article  Google Scholar 

  6. C.E. Shannon, Bell Sys. Tech. J., 1949, vol. 28, pp. 656–715.

    MATH  MathSciNet  Google Scholar 

  7. I. Glesk, Y.-K. Huang, C.-S. Bres, and P. R. Prucnal, “Design and demonstration of a novel Optical CDMA platform for avionics applications,” Opt. Comm., vol. 271, no. 1, pp. 65–70 (2007).

    Article  Google Scholar 

  8. L. Tanceski and I. Andonovic, “Wavelength Hopping/Time Spreading Code Division Mul-tiple Access Systems,” Electron. Lett., vol. 30, no. 9, pp. 721–723, 1994.

    Google Scholar 

  9. C.-S. Bres, I. Glesk, and P. R. Prucnal, “Demonstration of an eight-user 115-Gchip/s incoher-ent OCDMA system using supercontinuum generation and optical time gating;” IEEE Pho-ton. Technol. Lett., vol. 18, no. 7, pp. 889–891, Apr. 2006.

    Article  Google Scholar 

  10. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A terahertz optical asymmetric demulti-plexer (TOAD),” IEEE Photon. Technol. Lett., vol. 5, pp. 787–789 (1993)

    Article  Google Scholar 

  11. T. S. El-Bawab, Optical switching, New York: Springer, 2006.

    Book  Google Scholar 

  12. T. Houbavlis, K. Zoiros, K. Vlachos, T. Papakyriakopoulos, H. Avramopoulos, F. Giardin, G. Guekos, R. Dall’Ara, S. Hansmann, and Burkhard, “All-optical XOR in a SOA-assisted fiber sagnac gate,” IEEE Photon. Technol. Lett., vol. 11, no. 3, pp. 334–336 (1999).

    Google Scholar 

  13. P. Moulin and J. A. O’Sullivan, “Information- theoretic analysis of information hiding,” IEEE Trans. Inform. Theory vol. 49, pp. 563–593 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  14. B. B. Wu, P. R. Prucnal, and E. Narimanov, “Secure transmission over an existing public WDM lightwave network,” IEEE Photon. Tech. Lett., vol. 18, pp. 1870–1872, Sept. 2006.

    Article  Google Scholar 

  15. J. A. Salehi, A. M. Weiner, and J. P. Heritage, “Coherent ultrashort light pulse code-division multiple access communication systems,” J. Lightwav. Technol., vol. 8, no.3, pp. 478–491 (1990).

    Article  Google Scholar 

  16. Y.-K. Huang, B. Wu, I. Glesk, E.E. Narimanov, T. Wang, and P. R. Prucnal, “Combining cryptographic and steganographic security with self-wrapped optical code division multiplex-ing techniques,” Electron. Lett., vol 43, no. 25, pp. 1449–1451 (2007).

    Google Scholar 

  17. A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of femtosecond pulses,” Opt. Lett., vol. 13, pp. 300–302, 1988.

    Google Scholar 

  18. J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access,” IEEE J. Select. Top. Quant. Electr., vol. 13, pp. 1351–1369, 2007.

    Article  Google Scholar 

  19. S. Etemad, T. Banwell, S. Galli, J. Jackel, R. Menendez, P. Toliver, J. Young, P. Delfyett, C. Price, and T. Turpin, “Optical-CDMA incorporating phase coding of coherent frequency bins: concept, simulation, experiment,” Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, 2004.

    Google Scholar 

  20. P. Toliver, J. Young, J. Jackel, T. Banwell, R. Menendez, S. Galli, and S. Etemad, “Optical network compatibility demonstration of O-CDMA based on hyperfine Spectral Phase Cod-ing,” LEOS 2004, Paper WE3, Puerto Rico, 2004.

    Google Scholar 

  21. B. J. Wysocki, T. A. Wysocki, “Modified Walsh-Hadamard sequences for DS CDMA wire-less systems,” Int. J. Adapt. Control Signal Process., vol. 16, pp. 589–602, 2002.

    Article  MATH  Google Scholar 

  22. A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. E. Lit-tle, S. T. Chu, C. Wei, C. Wenlu, J. Hryniewicz, F. Johnson, D. Gill, O. King, R. Davidson, K. Donovan, and P. J. Delfyett, “Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications,” J. Lightw. Technol., vol. 24, no. 1, pp. 77–87, Jan. 2006.

    Article  Google Scholar 

  23. A. Agarwal, R. Menendez, P. Toliver, S. Etemad, and J. Jackel, “Code scrambling in spec-tral phase encoded OCDMA using reconfigurable integrated ring resonator based cod-ers,” Optical Amplifiers and Applications/Coherent Optical Technologies and Applications (OAA/COTA), Paper CFD4, Whistler, Canada, 2006.

    Google Scholar 

  24. A. Agarwal, R. Menendez, P. Toliver, J. Jackel, and S. Etemad, “Enhanced confidentiality with multi-level phase scrambling in SPE-OCDMA,” Conference on Lasers and Electro-optics, paper CThBB2, Baltimore, MD, 2007.

    Google Scholar 

  25. A. Agarwal, R. Menendez, P. Toliver, J. Jackel, and S. Etemad, “Demonstration of modified hadamard codes for OCDM-based confidentiality,” Proc. European Conf. Opt. Commun., paper 10.5.6, Berlin, Germany, 2007.

    Google Scholar 

  26. X. Wang, N. Wada, T. Miyazaki, and K. Kitayama, “Coherent OCDMA system using DPSK data format with balanced detection,” IEEE Photon. Technol. Lett., vol. 18, no. 7, pp.826–828, April 2006.

    Article  Google Scholar 

  27. P. Toliver, A. Agarwal, T. Banwell, R. Menendez, J. Jackel, and S. Etemad, “40 Gb/s OCDM-based signal transmission over 400 km using integrated micro-ring resonator-based spec-tral phase encoding and quaternary code scrambling for enhanced data confidentiality,” Proc.European Conf. Opt. Commun., paper PDP3.3, Berlin, Germany, 2007.

    Google Scholar 

  28. D. Iazikov, C. M. Greiner, T. W. Mossberg, “Integrated holographic filters for flat-passband optical multiplexers,” Opt. Expr., vol. 14, p. 3497, 2006.

    Article  Google Scholar 

  29. E. Narimanov, W. C. Kwong, G.-C. Yang, and P. R. Prucnal, “Shifted carrier-hopping prime codes for multicode keying in wavelength-time O-CDMA”, IEEE Trans. Commun., vol. 53, no. 12, pp. 2150–2156, Dec. 2005.

    Article  Google Scholar 

  30. “Optical CDMA Code Wavelength Conversion using PPLN to Improve Tramission Security,” IEEE Photon. Tech. Lett., Vol 21, No.6, PP 383–385, Mar. 2009

    Google Scholar 

  31. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all- optical thresholder and its applications for OCDMA,” Opt. Expr., 15(20), p. 13114, Oct. 2007.

    Article  Google Scholar 

  32. Z. Wang, A. Chowdhury, and P. R. Prucnal, “OCDMA code wavelength-domain conver- sion using PPLN waveguide for transmission security,” submitted to IEEE Photon. Tech. Lett.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Kai Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huang, YK., Toliver, P., Prucnal, P.R. (2009). Signal Processing Techniques for Data Confidentiality in OCDMA Access Networks. In: Shami, A., Maier, M., Assi, C. (eds) Broadband Access Networks. Optical Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92131-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-92131-0_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-92130-3

  • Online ISBN: 978-0-387-92131-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics