Skip to main content

Horseshoe Crabs – An Ancient Ancestry Revealed

  • Chapter
  • First Online:
Biology and Conservation of Horseshoe Crabs

Abstract

The fossil record of the basic xiphosurid horseshoe crab body plan has been extended back to the Late Ordovician Period, about 445 million years ago, demonstrating an origin that lies outside of the paraphyletic ‘synziphosurines.’ Horseshoe crab body fossils are exceptionally rare and are found mostly in shallow coastal and marginal marine Konservat-Lagerstätten deposits. Their sporadic occurrences document a post-Cambrian history of low overall diversity with a modest morphological and taxonomic peak in the Late Paleozoic Era. Survival of a single xiphosurid lineage through the end-Permian mass extinction events was followed by a minor secondary radiation during the Triassic Period. The Jurassic to Recent fossil record of horseshoe crabs is relatively impoverished in both taxa and known occurrences. Overall, the rarity of fossil xiphosurids reflects both taphonomic biases inherent in the unusual conditions required for preservation of their non-biomineralized exoskeletons and complex ecological factors related to a long-term association with shallow marginal aquatic habitats. Focused paleontological investigations should yield additional fossil horseshoe crab discoveries that will in turn inform research on their phylogeny, morphological stasis, and ecological persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JG, Feldmann RM (2005) Panduralimulus babcocki n. gen. and sp., a new limulacean horseshoe crab from the Permian of Texas. J Paleontol 79:594–600

    Article  Google Scholar 

  • Allison PA, Briggs DEG (1991) Taphonomy of nonmineralized tissues. In: Allison PA, Briggs DEG (eds) Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York, pp 26–70

    Google Scholar 

  • Allmon WD (2001) Marine benthic communities. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Publishing, Oxford, pp 303–307

    Chapter  Google Scholar 

  • Alvarez W (1998) T. rex and the Crater of Doom. Random House, New York

    Google Scholar 

  • Anderson LI (1996) Taphonomy and taxonomy of Palaeozoic Xiphosura. PhD Thesis, University of Manchester, UK

    Google Scholar 

  • Anderson LI, Dunlop JA, Horrocks CA, Winkelmann HM, Eagar RMC (1997) Exceptionally preserved fossils from Bickershaw, Lancashire UK (Upper Carboniferous, Westphalian A (Langsettian)). Geol J 32:197–210

    Article  Google Scholar 

  • Anderson LI, Selden PA (1997) Opisthosomal fusion and phylogeny of Palaeozoic Xiphosura. Lethaia 30:19–31

    Article  Google Scholar 

  • Anderson LI, Shuster CN Jr (2003) Throughout geologic time: where have they lived? In: Shuster CN Jr, Barlow RB, Brockman H J (eds) The American Horseshoe Crab. Harvard University Press, Cambridge, MA, pp 189–223

    Google Scholar 

  • Avise JC, Nelson WS, Sugita H (1994) A speciational history of “living fossils”: molecular evolutionary patterns in horseshoe crabs. Evolution 46:1986–2001

    Article  Google Scholar 

  • Babcock LE, Merriam DF, West RR (2000) Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian-Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus. Lethaia 33:129–141

    Article  Google Scholar 

  • Barthel KW, Swinburne NHM, Conway Morris S (1990) Solnhofen – A study in Mesozoic palaeontology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bergström J (1968) Eolimulus, a Lower Cambrian xiphosurid from Sweden. Geologiska Föreningens i Stockholm Förhandlingar 90:489–503

    Article  Google Scholar 

  • Bergström J (1975) Functional morphology and evolution of xiphosurids. Fossils and Strata 4:291–305

    Google Scholar 

  • Bottjer DJ, Etter W, Hagadorn JW, Tang CM (eds) (2002) Exceptional Fossil Preservation – A Unique View on the Evolution of Marine Life. Columbia University Press, New York

    Google Scholar 

  • Briggs DEG (2001) Exceptionally preserved fossils. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Publishing, Oxford, UK, pp 328–332

    Chapter  Google Scholar 

  • Briggs DEG, Collins DH (1988) A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology 31:779–798

    Google Scholar 

  • Briggs DEG, Fortey RA (2005) Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31 (Supplement):94–112

    Article  Google Scholar 

  • Briggs DEG, Moore RA, Schultz JW, Schweigert G (2005) Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proc Roy Soc Lond B Biol 272:627–632

    Article  Google Scholar 

  • Budd GE (2008) Head structure in upper stem-group euarthropods. Palaeontology 51:561–573

    Article  Google Scholar 

  • Chatterjee S, Guven N, Yoshinobu A, Donofrio R (2006) Shiva structure: a possible KT boundary impact crater on the western shelf of India. Special Publications of the Museum of Texas Tech University 50, 39 pp

    Google Scholar 

  • Chen J, Waloszek D, Maas A (2004) A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20

    Google Scholar 

  • Cotton TJ, Braddy SJ (2004) The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. In: Braddy SJ, Clarkson ENK (eds) Chelicerate Palaeobiology and Evolution. Trans Roy Soc Edinburgh (Earth Sci) 94:169–193

    Google Scholar 

  • Crônier C, Courville P (2005) New xiphosuran merostomata from the Upper Carboniferous of the Graissessac Basin (Massif Central, France). Comptes Rendus Palevol 4:123–133

    Article  Google Scholar 

  • Dunlop JA, Selden PA (1997) The early history and phylogeny of the chelicerates. In: Fortey RA, Thomas RH (eds) Arthropod Relationships. Systematics Association Special Volume Series 55. Chapman & Hall, London, UK, pp 221–235

    Google Scholar 

  • Edgecombe GD, Wilson GDF, Colgan DJ, Gray MR, Cassis G (2000) Arthropod cladistics: combined analysis of histone H3 and U2 snRNA sequences and morphology. Cladistics 16:155–203

    Article  Google Scholar 

  • Eldredge N (1974) Revision of the suborder Synziphosurina (Chelicerata: Merostomata), with remarks on merostome phylogeny. Am Mus Novit 2543:1–41

    Google Scholar 

  • Erwin DH, Bowring SA, Yugan J (2002) End-Permian mass extinctions: a review. In: Koeberl C, MacLoed KG (eds) Catastrophic events and mass extinctions. Geological Society of America Special Paper 356, pp 363–383

    Google Scholar 

  • Ewington DL, Clarke MJ, Banks MR (1989) A Late Permian fossil horseshoe crab (Paleolimulus: Xiphosura) from Poatina, Great Western Tiers, Tasmania. Roy Soc Tasmania Papers Proc 123:127–131

    Google Scholar 

  • Fisher DC (1979) Evidence for subaerial activity of Euproops danae (Merostomata, Xiphosurida). In: Nitecki MH (ed) Mazon Creek Fossils. Academic Press, New York, pp 379–447

    Google Scholar 

  • Fisher DC (1982) Phylogenetic and macroevolutionary patterns within the Xiphosurida. In: Mamet B, Copeland MJ (eds) Proceedings of the Third North American Paleontological Convention. Montreal, pp 175–180

    Google Scholar 

  • Fisher DC (1984) The Xiphosurida: archetypes of bradytely? In: Eldredge N, Stanley SM (eds) Living Fossils. Springer-Verlag, New York, pp 196–213

    Chapter  Google Scholar 

  • Fortey, R (2000) Trilobite! Eyewitness to Evolution. Harper Collins, London

    Book  Google Scholar 

  • Giribet G, Richter S, Edgecombe GD, Wheeler WC (2005) The position of crustaceans within Arthropoda – evidence from nine molecular loci and morphology. In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod Relationships. CRC Press, Boca Raton, pp 307–352

    Google Scholar 

  • Gupta NS, Tetlie OE, Briggs DEG, Pancost RD (2007) The fossilization of eurypterids: a result of molecular transformation. Palaios 22:439–447

    Article  Google Scholar 

  • Hendricks JR, Lieberman BS (2008) New phylogenetic insights into the Cambrian radiation of arachnomorph arthropods. J Paleontol 82:585–594

    Article  Google Scholar 

  • Kamenz C, Dunlop JA, Scholtz G, Kerp H, Hass, H (2008) Microanatomy of Early Devonian book lungs. Biol Lett 4:212–215 (doi:10.1098/rsbl.2007.597)

    Article  PubMed  Google Scholar 

  • Kidwell SM (2001) Major biases in the fossil record. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 297–303

    Chapter  Google Scholar 

  • Kraus O (1976) Zur phylogenetische Stellung und Evolution der Chelicerata. Entomol Ger 3:1–12

    Google Scholar 

  • Malz H, Poschmann M (1993) Erste Süsswasser-Limuliden (Arthropoda, Chelicerata) aus dem Rotliegenden der Saar-Nahe-Senke. Osnabrücker naturwissenschaftlich Mitteilung 19:21–34

    Google Scholar 

  • Martin RE (1999) Taphonomy: A Process Approach. Cambridge University Press, Cambridge, UK, 508 pp

    Book  Google Scholar 

  • Meischner K-D (1962) Neue Funde von Psammolimulus gottingensis (Merostomata, Xiphosura) aus dem Mittleren Buntsandstein von Göttingen. Paläontol Z (H Schmidt Festband):185–193

    Google Scholar 

  • Mikulic DG (1997) Xiphosura. In: Shabica CW, Hay AA (eds) Richardson’s Guide to the Fossils Fauna and Flora of Mazon Creek. Northeastern Illinois University, Chicago, pp 134–139

    Google Scholar 

  • Moore RA, Braddy SJ (2005) A glyptocystid cystoid affinity for the putative stem group chelicerate (Arthropoda: Aglaspidida or Xiphosura) Lemoneites from the Ordovician of Texas, USA. Lethaia 38:293–296

    Article  Google Scholar 

  • Moore RA, Briggs DEG, Bartels C (2005a) A new specimen of Weinbergina opitzi (Chelicerata: Xiphosura) from the Lower Devonian Hunsrück Slate, Germany. Paläontol Z 79:399–408

    Google Scholar 

  • Moore RA, Briggs DEG, Braddy SJ, Anderson LI, Mikulic DG, Kluessendorf J (2005b) A new synziphosurine (Chelicerata: Xiphosura) from the Late Llandovery (Silurian) Waukesha Lagerstätte, Wisconsin, USA. J Paleontol 79:242–250

    Article  Google Scholar 

  • Moore RA, McKenzie SC, Lieberman BS (2007) A Carboniferous synziphosurine (Xiphosura) from the Bear Gulch Limestone, Montana, USA. Palaeontology 50:1013–1019

    Article  Google Scholar 

  • Ocampo A, Vajda V, Buffetaut E (2006) Unraveling the Cretaceous–Paleogene (KT) turnover, evidence from flora, fauna and geology. In: Cockell C, Gilmour I, Koeberl C (eds) Biological Processes Associated with Impact Events. Springer, Berlin, pp 197–219

    Chapter  Google Scholar 

  • Pickett J (1984) A new freshwater limuloid from the Middle Triassic of New South Wales. Palaeontology 27:609–621

    Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Blair-Hedges S (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BioMed Central: http://www.biomedcentral.com/1741-7007/2/1

  • Racheboeuf PR, Vannier J, Anderson LI (2002) A new three-dimensionally preserved xiphosuran chelicerate from the Montceau-Les-Mines Lagerstätte (Carboniferous, France). Palaeontology 45:125–147

    Article  Google Scholar 

  • Reeside JB Jr, Harris DV (1952) A Cretaceous horseshoe crab from Colorado. J Wash Acad Sci 42:174–178

    Google Scholar 

  • Riek EF (1955) A new xiphosuran from the Triassic sediments at Brookvale, New South Wales. Rec Aust Mus 23:281–282

    Article  Google Scholar 

  • Riek EF (1968) A re-examination of two arthropod species from the Triassic of Brookvale, New South Wales. Rec Aust Mus 27:303–310

    Article  Google Scholar 

  • Riek EF, Gill ED (1971) A new xiphosuran genus from Lower Cretaceous freshwater sediments at Koonwarra, Victoria, Australia. Palaeontology 14:206–210

    Google Scholar 

  • Rudkin DM, Young GA, Nowlan GS (2008) The oldest horseshoe crab: a new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada. Palaeontology 51:1–9

    Article  Google Scholar 

  • Scholtz G, Edgecombe GD (2005) Heads, Hox, and the phylogenetic position of trilobites. In: Koenemann S, Jenner RA (eds) Crustacea and Arthropod Relationships. CRC Press, Boca Raton, pp 139–165

    Chapter  Google Scholar 

  • Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Devel Genes Evol 216:395–415

    Article  Google Scholar 

  • Seilacher A (2007) Trace Fossil Analysis. Springer, Berlin

    Google Scholar 

  • Seilacher A, Reif W-E, Westphal F (1985) Sedimentological, ecological and temporal controls of fossil Lagerstätten. Phil Trans Roy Soc Lond B 311:5–23

    Article  Google Scholar 

  • Selden PA, Dunlop JA (1998) Fossil taxa and relationships of chelicerates. In: Edgecombe GD (ed) Arthropod Fossils and Phylogeny. Columbia University Press, New York, pp 303–331

    Google Scholar 

  • Selden PA, Nudds J (2004) Evolution of Fossil Ecosystems. The University of Chicago Press, Chicago

    Google Scholar 

  • Selden PA, Siveter DJ (1987) The origin of the limuloids. Lethaia 20:383–392

    Article  Google Scholar 

  • Shuster CN Jr, Anderson LI (2003) A history of skeletal structure: clues to relationships among species. In: Shuster CN Jr, Barlow RB, Brockman HJ (eds) The American Horseshoe Crab. Harvard University Press, Cambridge, pp 154–188

    Google Scholar 

  • Siveter DJ, Sutton MD, Briggs DEG, Siveter DJ (2004) A Silurian sea spider. Nature 431:978–980

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz BA, Briggs DEG (2001) Animal cuticles. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell, Oxford, pp 259–261

    Chapter  Google Scholar 

  • Størmer L (1952) Phylogeny and taxonomy of fossil horseshoe crabs. J Paleontol 26:630–639

    Google Scholar 

  • Tanacredi JT (ed) (2001) Limulus in the Limelight. Kluwer Academic/Plenum, New York

    Google Scholar 

  • Tetlie OE (2007) Distribution and dispersal history of Eurypterida (Chelicerata). Palaeogeogr Palaeoclimatol Palaeoecol 252:557–574

    Article  Google Scholar 

  • Tetlie OE, Cuggy MB (2007) Phylogeny of the basal swimming eurypterids (Chelicerata; Eurypterida; Eurypterina). J Syst Palaeontol 5:345–356

    Article  Google Scholar 

  • Vía L (1987) Artropodos fosiles Triàsicos de Alcover-Montral. II. Limulidos. Cuadernos Geol Ibérica 11:281–292

    Google Scholar 

  • Walls EA, Berkson J, Smith SA (2002) The horseshoe crab, Limulus polyphemus: 200 million years of existence, 100 years of study. Rev Fish Sci 10:39–73

    Article  Google Scholar 

  • Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘orsten’ of Sweden, and the phylogenetic position of the pycnogonids. Palaeontology 45:421–446

    Article  Google Scholar 

  • Waloszek D, Chen J, Maas A, Wang X (2005) Early Cambrian arthropods – new insights into arthropod head and structural evolution. Arthropod Struct Dev 34:189–205

    Article  Google Scholar 

  • Waloszek D, Maas A, Chen J, Stein M (2007) Evolution of cephalic feeding structures and the phylogeny of Arthropoda. Palaeogeogr Palaeoclimatol Palaeoecol 254:273–287

    Article  Google Scholar 

  • Wills MA (1996) Classification of the arthropod Fuxianhuia. Science 272:746–747

    Article  CAS  Google Scholar 

  • Woodward H (1879) On the occurrence of a fossil king-crab (Limulus syriacus) in the Cretaceous formation of Lebanon. Q J Geol Soc Lond 35:554–555

    Google Scholar 

  • Xia Xuhua (2000) Phylogenetic relationship among horseshoe crab species: effect of substitution models on phylogenetic analyses. Syst Biol 49:87–100

    Google Scholar 

  • Yin H, Warrington G, Xie S (eds) (2007) Environmental and biotic changes during the Paleozoic-Mesozoic transition. Glob Planet Change 55:(1–3), 236

    Google Scholar 

  • Young GA, Rudkin DM, Dobrzanski EP, Robson SP, Nowlan GS (2007) Exceptionally preserved Late Ordovician biotas from Manitoba, Canada. Geology 35:883–886

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Sciences and Engineering Research Council (NSERC), The Manitoba Museum Foundation, the Board of Governors of the Royal Ontario Museum, and the Churchill Northern Studies Centre (CNSC) for financial and logistical support of fieldwork and research on Ordovician xiphosurids and Lagerstätten. Rudkin’s invited attendance at the 2007 International Symposium on the Science and Conservation of Horseshoe Crabs was generously funded by conference sponsors and organizers, and he is indebted to all involved for the opportunity to participate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Rudkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rudkin, D.M., Young, G.A. (2009). Horseshoe Crabs – An Ancient Ancestry Revealed. In: Tanacredi, J., Botton, M., Smith, D. (eds) Biology and Conservation of Horseshoe Crabs. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89959-6_2

Download citation

Publish with us

Policies and ethics