Skip to main content

The THEMIS Mission

  • Chapter
The THEMIS Mission

Abstract

The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-satellites (hereafter termed “probes”) which line up along the Earth’s magnetotail to track the motion of particles, plasma and waves from one point to another and for the first time resolve space–time ambiguities in key regions of the magnetosphere on a global scale. The probes are equipped with comprehensive in-situ particles and fields instruments that measure the thermal and super-thermal ions and electrons, and electromagnetic fields from DC to beyond the electron cyclotron frequency in the regions of interest. The primary goal of THEMIS, which drove the mission design, is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map (∼10 RE): (i) a local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection at ∼25 RE. However, the probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives, namely: how the radiation belts are energized on time scales of 2–4 hours during the recovery phase of storms, and how the pristine solar wind’s interaction with upstream beams, waves and the bow shock affects Sun–Earth coupling. THEMIS’s open data policy, platform-independent dataset, open-source analysis software, automated plotting and dissemination of data within hours of receipt, dedicated ground-based observatory network and strong links to ancillary space-based and ground-based programs. promote a grass-roots integration of relevant NASA, NSF and international assets in the context of an international Heliophysics Observatory over the next decade. The mission has demonstrated spacecraft and mission design strategies ideal for Constellation-class missions and its science is complementary to Cluster and MMS. THEMIS, the first NASA micro-satellite constellation, is a technological pathfinder for future Sun-Earth Connections missions and a stepping stone towards understanding Space Weather.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • A.T. Aikio , Characteristics of pseudobreakups and substorms observed in the ionosphere, at the geosynchronous orbit, and in the midtail. J. Geophys. Res. 104, 12263 (1999)

    Article  ADS  Google Scholar 

  • S.-I. Akasofu, Physics of Magnetospheric Substorms (Reidel, Dordrecht, 1976)

    Google Scholar 

  • V. Angelopoulos , Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257 (1994)

    Article  ADS  Google Scholar 

  • V. Angelopoulos , Magnetotail flow bursts: association to global magnetospheric circulation, relationship to ionospheric activity and direct evidence for localization. Geophys. Res. Lett. 24, 2271 (1997a)

    Article  ADS  Google Scholar 

  • V. Angelopoulos , Multipoint analysis of a bursty bulk flow event on April 11, 1985. J. Geophys. Res. 101, 4967 (1997b); also see correction: J. Geophys. Res., 102, 211 (1997b)

    Article  ADS  Google Scholar 

  • V. Angelopoulos , On the relationship between bursty flows, current disruption and substorms. Geophys. Res. Lett. 26, 2841 (1999)

    Article  ADS  Google Scholar 

  • V. Angelopoulos et al., Plasma sheet electromagnetic power generation and its dissipation along auroral field lines, J. Geophys. Res. (2001, in press)

    Google Scholar 

  • G. Atkinson, The current system of geomagnetic bays. J. Geophys. Res. 23, 6063 (1967)

    Article  ADS  Google Scholar 

  • U. Auster et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • D.N. Baker , Neural line model of substorms: Past results and present view. J. Geophys. Res. 101, 12975 (1996)

    Article  ADS  Google Scholar 

  • M. Bester et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • W. Baumjohann , Average plasma properties in the central plasma sheet. J. Geophys. Res. 94, 6597 (1989)

    Article  ADS  Google Scholar 

  • J. Birn , Flow braking and the substorm current wedge. J. Geophys. Res. 104, 19895 (1999)

    Article  ADS  Google Scholar 

  • Bonnell et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • J.E. Borovsky , The occurrence rate of magnetospheric-substorm onsets: random and periodic substorms. J. Geophys. Res. 98, 3807 (1993)

    Article  ADS  Google Scholar 

  • C.W. Carlson et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • M.R. Collier , Timing accuracy for the simple planar propagation of magnetic field structures in the solar wind. Geophys. Res. Lett. 25, 2509 (1998)

    Article  ADS  Google Scholar 

  • N.U. Crooker , Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements. J. Geophys. Res. 87, 2224 (1982)

    Article  ADS  Google Scholar 

  • C.M. Cully et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • I.A. Daglis , “Fine structure” of the storm-substorm relationship: ion injections during Dst decrease. Adv. Space Res. 25, 2369 (2000)

    Article  ADS  Google Scholar 

  • R.D. Elphinstone , Observations in the vicinity of substorm onset: implications for the substorm process. J. Geophys. Res. 100, 7937 (1995)

    Article  ADS  Google Scholar 

  • D.H. Fairfield , Upstream pressure variations associated with the bow shock and their effects on the magnetosphere. J. Geophys. Res. 95, 3773–3786 (1990)

    Article  ADS  Google Scholar 

  • D.H. Fairfield , Advances in magnetospheric storm and substorm research, 1989–1991. J. Geophys. Res. 97(A7), 10865–10874 (1992)

    Article  ADS  Google Scholar 

  • D.H. Fairfield et al., Geotail abservations of substorm onset in the inner magnetotail. J. Geophys. Res. 103 (1998)

    Google Scholar 

  • C. Farrugia , Viscous-type processes in the solar wind–magnetosphere interaction. Space. Sci. Rev. 95(1/2), 443–456 (2001)

    Article  ADS  Google Scholar 

  • L.A. Frank, J.B. Sigwarth, Findings concerning the positions of substorm onsets with auroral images from the Polar spacecraft. J. Geophys. Res. 105, 12747 (2000)

    Article  ADS  Google Scholar 

  • L.A. Frank , in Proceedings of the International Conference on Substorms - 4 (ICS-4) (Terra Scientific, Tokyo, 1998), p. 3

    Google Scholar 

  • S. Frey et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • Friedel , J. Atmospheric Sol. Terr. Phys. 64, 265–282 (2002)

    Article  ADS  Google Scholar 

  • E. Friedrich , Ground-based observations and plasma instabilities in auroral substorms. Phys. Plasmas 8, 1104 (2001)

    Article  ADS  Google Scholar 

  • S. Harris et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-007-9294-2

  • P.R. Harvey et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • M.G. Henderson , Observations of magnetospheric substorms occurring with no apparent solar wind/IMF trigger. J. Geophys. Res. 101, 10773 (1996)

    Article  ADS  Google Scholar 

  • M.G. Henderson , Are north-south aligned auroral structures an ionospheric manifestation of bursty bulk flows? Geophys. Res. Lett. 25, 3737 (1998)

    Article  ADS  Google Scholar 

  • M. Hesse, J. Birn, On dipolarization and its relation to the substorm current wedge. J. Geophys. Res. 96, 19417 (1991)

    Article  ADS  Google Scholar 

  • E.W. Hones Jr., The magnetotail: its generation and dissipation, in Physics of Solar Planetary Environments, ed. by D.J. Williams, AGU, vol. 558, 1976

    Google Scholar 

  • E.W. Hones Jr. , Detailed examination of a plasmoid in the distant magnetotail with ISEE 3. Geophys. Res. Lett. 11, 1046 (1984)

    Article  ADS  Google Scholar 

  • C. Jacquey , Location and propagation of the magnetotail current disruption during substorm expansion: analysis and simulation of an ISEE multi-onset event. Geophys. Res. Lett. 3, 389 (1991)

    Article  ADS  Google Scholar 

  • J.R. Kan, A globally integrated substorm model: tail reconnection and magnetosphere-ionosphere coupling. J. Geophys. Res. 103, 11787 (1998)

    Article  ADS  Google Scholar 

  • R.L. Kaufmann, Substorm currents: growth phase and onset. J. Geophys. Res. 92, 7471 (1987)

    Article  ADS  Google Scholar 

  • Kennel, 1992, The Kiruna conjecture: The strong version, in ICS-1 Proceedings. ESA SP-335, 1992, p. 599

    Google Scholar 

  • Larson et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • G. Le, C.T. Russell, H. Kuo, Flux transfer events–Spontaneous or driven? Geophys. Res. Lett. 20, 791 (1993)

    Article  ADS  Google Scholar 

  • X. Li , Multisatellite observations of the outer zone electron variation during the November 3–4, 1993, magnetic storm. J. Geophys. Res. 102, 14123 (1997)

    Article  ADS  Google Scholar 

  • Li , Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements. Geophys. Res. Lett. 28, 1887 (2001)

    Article  ADS  Google Scholar 

  • Y. Lin, D.W. Swift, L.C. Lee, Simulation of pressure pulses in the bow shock and magnetosheath driven by variations in interplanetary magnetic field direction. J. Geophys. Res. 101, 27251 (1996)

    Article  ADS  Google Scholar 

  • M. Lockwood, M.N. Wild, On the quasi-periodic nature of magnetopause flux transfer events. J. Geophys. Res. 98, 5935 (1993)

    Article  ADS  Google Scholar 

  • M. Ludlam et al., The THEMIS magnetic cleanliness program. Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • A.T.Y. Lui, Extended consideration of a synthesis model for magnetospheric substorms. AGU Mon. Ser., vol. 64, 1991, p. 43

    Google Scholar 

  • A.T.Y. Lui, Current disruption in the Earth’s magnetosphere: Observations and models. J. Geophys. Res. 101, 13067 (1996)

    Article  ADS  Google Scholar 

  • A.T.Y. Lui , A multiscale model for substorms. Space Sci. Rev. 95, 325 (2001)

    Article  ADS  Google Scholar 

  • A.T.Y. Lui, J.R. Burrows, On the location of auroral arcs near substorm onsets. J. Geophys. Res. 83, 3342 (1978)

    Article  ADS  Google Scholar 

  • A.T.Y. Lui , A case study of magnetotail current sheet disruption and diversion. Geophys. Res. Lett. 7, 721 (1988)

    Article  ADS  Google Scholar 

  • L.R. Lyons, A new theory for magnetospheric substorms. J. Geophys. Res. 100, 19069 (1995)

    Article  ADS  Google Scholar 

  • L.R. Lyons, Substorms: Fundamental observational features, distiction from other disturbances, and external triggering. J. Geophys. Res. 101, 13011 (1996)

    Article  ADS  Google Scholar 

  • J.P. McFadden et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • R. McPherron , Satellite studies of magnetospheric substorms on Aug 15th, 1968. J. Geophys. Res. 78, 3131 (1973)

    Article  ADS  Google Scholar 

  • R.L. McPherron , Solar wind triggering of substorm onset. J. Geomagn. Geoelectr. 38, 1089 (1986)

    ADS  Google Scholar 

  • S. Mende et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • Millan, Thorne, J. Atmos. Solar Terr. Phys. 69, 362–377 (2007)

    Article  ADS  Google Scholar 

  • D.G. Mitchell , Current carriers in the near-Earth cross-tail current sheet during substorm growth phase. Geophys. Res. Lett. 17, 583 (1990)

    Article  ADS  Google Scholar 

  • T. Nagai, Observed magnetic substorm signatures at synchronous altitudes. J. Geophys. Res. 87, 4405 (1982)

    Article  ADS  Google Scholar 

  • T. Nagai , Substorm, tail flows, and plasmoids. Adv. Space Res. 20, 961 (1997)

    Article  ADS  Google Scholar 

  • T. Nagai , Structure and dynamics of magnetic reconnection for substorm onsets with Geotail observations. J. Geophys. Res. 103, 4419 (1998)

    Article  ADS  Google Scholar 

  • R. Nakamura , Flow bursts and auroral activations: Onset timing and foot point location. J. Geophys. Res. 106, 10777 (2001a)

    Article  ADS  Google Scholar 

  • R. Nakamura , Earthward flow bursts, auroral streamers, and small expansions. J. Geophys. Res. 106, 10791 (2001b)

    Article  ADS  Google Scholar 

  • S.-I. Ohtani, Earthward expansion of tail current disruption: dual-satellite study. J. Geophys. Res. 103, 6815 (1998)

    Article  ADS  Google Scholar 

  • S.-I. Ohtani, Substorm trigger processes in the magnetotail: recent observations and outstanding issues. Space Sci. Rev. 95, 347 (2001)

    Article  ADS  Google Scholar 

  • S.-I. Ohtani et al., Tail current disruption in the geosynchronous region, in Magnetospheric Substorms. AGU Mongr. Ser., vol. 64, 1991, p. 131

    Google Scholar 

  • S. Ohtani , Radial expansion of the tail current disruption during substorms: A new approach to the substorm onset region. J. Geophys. Res. 97, 3129 (1992a)

    Article  ADS  Google Scholar 

  • S.-I. Ohtani , Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration: explosive growth phase. J. Geophys. Res. 97, 19311 (1992b)

    Article  ADS  Google Scholar 

  • Pankow et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • G. Paschmann, G. Haerendel, N. Sckopke, E. Möbius, H. Lühr, C.W. Carlson, Three-dimensional plasma structures with anomalous flow direction near the Earth’s bow shock. J. Geophys. Res. 93, 11279 (1988)

    Article  ADS  Google Scholar 

  • Paschmann , Plasma acceleration at the magnetopause: evidence for reconnection. Nature 282, 243 (1979)

    Article  ADS  Google Scholar 

  • K.I. Paularena , Solar wind plasma correlations between IMP 8, INTERBALL-1, and WIND. J. Geophys. Res. 103, 14601 (1998)

    Article  ADS  Google Scholar 

  • Peticolas et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • A.A. Petrukovich , Two spacecraft observations of a reconnection pulse during an auroral breakup. J. Geophys. Res. 103, 47 (1998)

    Article  ADS  Google Scholar 

  • T. Phan et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • T.D. Phan, G. Paschmann, The magnetosheath region adjacent to the dayside magnetopause, in Physics of the Magnetopause. AGU Monograph, vol. 90 (1995)

    Google Scholar 

  • I.G. Richardson, S.W.H. Cowley, Plasmoid-associated energetic ion bursts in the deep geomagnetic tail: properties of the boundary layer. J. Geophys. Res. 90, 12133 (1985)

    Article  ADS  Google Scholar 

  • I.G. Richardson , Plasmoid-associated energetic ion bursts in the deep geomagnetic tail: properties of plasmoids and the postplasmoid plasma sheet. J. Geophys. Res. 92, 9997 (1987)

    Article  ADS  Google Scholar 

  • Roux et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • Russell et al., Space Sci. Rev. (2008, this issue). doi:10.1007/s11214-008-9337-0

  • C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results: magnetopause observations. Space Sci. Rev. 22, 681 (1978)

    Article  ADS  Google Scholar 

  • J.C. Samson, Proton aurora and substorm intensifications. Geophys. Res. Lett. 19, 2171 (1992)

    Article  ADS  Google Scholar 

  • E.T. Sarris , Location of the source of magnetospheric energetic particle bursts by multispacecraft observations. Geophys. Res. Lett. 3, 437 (1976)

    Article  ADS  Google Scholar 

  • E.T. Sarris , Detailed observations of a burst of energetic particles in the deep magnetotail by Geotail. J. Geomagn. Geoelectr. 48, 649 (1996)

    Google Scholar 

  • R. Schodel , Rapid flux transport in the central plasma sheet. J. Geophys. Res. 106, 301 (2001)

    Article  ADS  Google Scholar 

  • V.A. Sergeev , Triggering of substorm expansion by the IMF directional discontinuities: Time delay analysis. Planet. Space Sci. 38, 231 (1990)

    Article  ADS  Google Scholar 

  • V.A. Sergeev , In situ observations of magnetic reconnection prior to the onset of a small substorm. J. Geophys. Res. 100, 19121 (1995)

    Article  ADS  Google Scholar 

  • V.A. Sergeev , Steady magnetospheric convection: a review of recent results. Space Science Reviews 75, 551 (1996a)

    Article  ADS  Google Scholar 

  • V.A. Sergeev , Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. 101, 10817 (1996b)

    Article  ADS  Google Scholar 

  • V.A. Sergeev , Multiple-spacecraft observation of a narrow transient plasma jet in the Earth’s plasma sheet. Geophys. Res. Lett. 27, 851 (2000)

    Article  ADS  Google Scholar 

  • I. Shinohara , Rapid large-scale magnetic field dissipation in a collisionless current sheet via coupling between Kelvin-Helmholtz and lower-hybrid instabilities. Phys. Rev. Lett. 87, 095001 (2001)

    Article  ADS  Google Scholar 

  • K. Shiokawa , Azimuthal pressure gradient as driving force of substorm currents. Geophys. Res. Lett. 25, 959 (1998a)

    Article  ADS  MathSciNet  Google Scholar 

  • K. Shiokawa , High-speed ion flow, substorm current wedge, and multiple Pi2 pulsations. J. Geophys. Res. 103, 4491 (1998b)

    Article  ADS  Google Scholar 

  • D.G. Sibeck , The magnetospheric response to 8-minute period strong-amplitude upstream pressure variations. J. Geophys. Res. 94, 2505–2519 (1989)

    Article  ADS  Google Scholar 

  • D.G. Sibeck, K. Takahashi, S. Kokubun, T. Mukai, K.W. Ogilvie, A. Szabo, A case study of oppositely propagating Alfvén fluctuations in the solar wind and magnetosheath. Geophys. Res. Lett. 24, 3133 (1997)

    Article  ADS  Google Scholar 

  • D.G. Sibeck et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • G.L. Siscoe, H.E. Petschek, On storm weakening during substorm expansion phase. Ann. Geophys. 15, 211 (1997)

    Article  ADS  Google Scholar 

  • J.A. Slavin , CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment. J. Geophys. Res. 97, 8495 (1992)

    Article  ADS  Google Scholar 

  • P. Song, C.T. Russell, M.F. Thomsen, Slow mode transition in the frontside magnetosheath. J. Geophys. Res. 97, 8295 (1992)

    Article  ADS  Google Scholar 

  • D.J. Southwood, M.G. Kivelson, Magnetosheath flow near the subsolar magnetopause: Zwan-Wolf and Southwood-Kivelson theories reconciled. Geophys. Res. Lett. 22, 3275 (1995)

    Article  ADS  Google Scholar 

  • H.E. Spence, The what, where, when and why of magnetospheric substorm triggers. EOS 77, 81 (1996)

    Article  ADS  Google Scholar 

  • Taylor et al., Space Sci. Rev. (2008, this issue)

    Google Scholar 

  • V.A. Thomas, S.H. Brecht, Evolution of diamagnetic cavities in the solar wind. J. Geophys. Res. 93, 11341–11353 (1988)

    Article  ADS  Google Scholar 

  • H.J. Völk, R.-D. Auer, Motions of the bow shock induced by interplanetary disturbances. J. Geophys. Res., 40-48, 1974

    Google Scholar 

  • I. Voronkov , Shear flow instability in the dipolar magnetosphere. J. Geophys. Res. 104, 17323 (1999)

    Article  ADS  Google Scholar 

  • J.R. Wygant , Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: an energy source for the aurora. J. Geophys. Res. 105, 18675 (2000)

    Article  ADS  Google Scholar 

  • Y. Yamade , Field-aligned currents generated in magnetotail reconnection: 3D Hall-MHD simulations. J. Geophys. Res. 27, 1091 (2000)

    Google Scholar 

  • E. Zesta , The auroral signature of earthward flow bursts observed in the magnetotail. Geophys. Res. Lett. 27, 3241 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Angelopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, BV

About this chapter

Cite this chapter

Angelopoulos, V. (2009). The THEMIS Mission. In: Burch, J.L., Angelopoulos, V. (eds) The THEMIS Mission. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89820-9_2

Download citation

Publish with us

Policies and ethics