Skip to main content

Mitochondrial Regulation of Plant Programmed Cell Death

  • Chapter
  • First Online:
Plant Mitochondria

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

Programmed cell death is a cellular process that is an essential component of a plants normal growth and development, its defence mechanism to counter pathogen attack and its response to stress conditions. In both plant and animal cells there are various recognized types of programmed cell death; apoptosis or apoptotic-like, autophagy, or necrosis, and there is a certain amount of overlap between these different cell death processes. This overlap is unsurprising when one considers that a recurrent common feature between several types of programmed cell death is the role of the mitochondria in orchestrating the cascade of events that lead to the death of the cell. It has been shown that the mitochondria can coordinate death signals that lead to the initiation of cell death and subsequently release molecules that drive the destruction of the cell. For example, intermembrane space molecules such as cytochrome c are released from the mitochondria, into the cytoplasm, at an extremely early stage of the death process in both plant and animal cells. This release appears to be controlled in part by selective opening of the permeability transition pore in the mitochondria, and the magnitude of the opening of the permeability transition pore may be a determining factor in the type of programmed cell death a cell undergoes. Similarly, reactive oxygen species (ROS) production by mitochondria (possibly as a result of cytochrome c release) has been identified as a driver of cell death in plant cells and again the type of death program that is activated may be due to the levels of ROS produced in the dying cell as apoptosis, autophagy, or necrosis can be initiated by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

Apoptosis inducing factor

ANT:

Adenine nucleotide transporter

AOX:

Alternative oxidase

CsA:

Cyclosporine A

CypD:

Cyclophilin D

HR:

Hypersensitive response

IMS:

Intermembrane space

MPT:

Mitochondrial permeability transition

OMM:

Outer mitochondrial membrane

PCD:

Programmed cell death

PTP:

Permeability transition pore

ROS:

Reactive oxygen species

TE:

Tracheary element

TMV:

Tobacco mosaic virus

VDAC:

Voltage-dependent anion channel

VIGS:

Virus induced gene silencing

References

  • Arpagaus, S., Rawyler, A., Braendle, R. 2002. Occurrence and characteristics of the mitochondrial permeability transition in plants. J. Biol. Chem. 277:1780–1787.

    Article  PubMed  CAS  Google Scholar 

  • Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M., Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983.

    Article  PubMed  CAS  Google Scholar 

  • Azad, M. B., Chen, Y, Henson, E. S, Cizeau, J., McMillan-Ward, E., Israels, S. J., Gibson, SB. 2008. Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4:195–204.

    PubMed  CAS  Google Scholar 

  • Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M. R., Gottlieb, R. A., Dorn, G. W., Robbins, J., Molkentin, J. D. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662.

    Article  PubMed  CAS  Google Scholar 

  • Balk, J., Leaver, C. J. 2001. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818.

    PubMed  CAS  Google Scholar 

  • Balk, J., Leaver, C. J., McCabe, P. F. 1999. Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett. 463:151–154.

    Article  PubMed  CAS  Google Scholar 

  • Balk, J., Chew, S. K., Leaver, C. J., McCabe, P. F. 2003. The intermembrane space of plant mitochondria contains a DNase activity that may be involved in programmed cell death. Plant J. 34:573–583.

    Article  PubMed  CAS  Google Scholar 

  • Bassham, D. C. 2007. Plant autophagy-more than a starvation response. Curr. Opin. Plant Biol. 10:87–593.

    Article  CAS  Google Scholar 

  • Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M. A., Bernardi, P. 2005. Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J. Biol. Chem. 280:18558–18561.

    Article  PubMed  CAS  Google Scholar 

  • Berry, D. L., Baehrecke, E. H. 2007. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148.

    Article  PubMed  CAS  Google Scholar 

  • Blackstone, N. W., Kirkwood, T. B. L. 2003. Mitochondria and programmed cell death: “slave revolt” or community homeostasis? In Genetic and Cultural Evolution of Cooperation, ed. P. Hammerstein. pp. 309–325. Cambridge: The MIT Press.

    Google Scholar 

  • Bras, M., Queenan, B., Susin, S. A. 2005. Programmed cell death via mitochondria: different modes of dying. Biochem.-Moscow 70:231–239.

    Article  CAS  Google Scholar 

  • Cacas, J.-L. 2010. Devil Inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ. 33:1453–1473.

    Google Scholar 

  • Cacas, J.-L., Diamond, M. 2009. Is the autophagy machinery an executioner of programmed cell death in plants? Trends Plant Sci. 14:299–300.

    Article  CAS  Google Scholar 

  • Cande, C., Vahsen, N., Garrido, C., Kroemer, G. 2004. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ. 11:591–595.

    PubMed  CAS  Google Scholar 

  • Casolo, V., Petrussa, E., Krajnakova, J., Macri, F., Vianello, A. 2005. Involvement of the mitochondrial K-ATP(+) channel in H2O2- or NO-induced programmed death of soybean suspension cell cultures. J. Exp. Bot. 56:997–1006.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. R., Dickman, M. B. 2004. Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. J. Exp. Bot. 55:2617–2623.

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Ray, R., Dubik, D., Shi, L. F., Cizeau, J., Bleackley, R. C., Saxena, S., Gietz, R. D., Greenberg, A. H. 1997. The E1B 19 K Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J. Exp. Med. 186:1975–1983.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., McMillan-Ward, E., Kong, J., Israels, S. J., Gibson, S. B. 2008. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 15:171–182.

    Article  PubMed  CAS  Google Scholar 

  • Chinnadurai G., Vijayalingam S., Gibson S. B. 2008. BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathologic functions. Oncogene 27:S114–S127.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, P. G. H. 1990. Developmental cell death – morphological diversity and multiple mechanisms. Anat. Embryol. 181:195–213.

    Article  PubMed  CAS  Google Scholar 

  • Contran, N., Cerana, R., Crosti, P., Malerba, M. 2007. Cyclosporin A inhibits programmed cell death and cytochrome c release induced by fusicoccin in sycamore cells. Protoplasma 231:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Crompton, M. 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341:233–249.

    Article  PubMed  CAS  Google Scholar 

  • Crosti, P., Malerba, M., Bianchetti, R. 2001. Tunicamycin and Brefeldin A induce in plant cells a programmed cell death showing apoptotic features. Protoplasma 216:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, M. J., Wolpert, T. J. 2004. The victorin-induced mitochondrial permeability transition precedes cell shrinkage and biochemical markers of cell death, and shrinkage occurs without loss of membrane integrity. Plant J. 38:244–259.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, M., McCabe, P. F. 2007. The mitochondrion and plant programmed cell death. In Annual Plant Reviews: Plant Mitochondria, ed. D. C. Logan. pp. 308–334. Oxford: Blackwell.

    Chapter  Google Scholar 

  • Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R., Vierstra, R. D. 2002. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 277:33105–33114.

    Article  PubMed  CAS  Google Scholar 

  • Duval, I., Brochu, V., Simard, M., Beaulieu, C., Beaudoin, N. 2005. Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. Planta 222:820–831.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, H. M., Horvitz, H. R. 1986. Genetic-control of programmed cell-death in the nematode C. elegans. Cell 44:817–829.

    Article  PubMed  CAS  Google Scholar 

  • Elmore, S. P., Qian, T., Grissom, S. F., Lemasters, J. J. 2001. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 15:2286–2287.

    PubMed  CAS  Google Scholar 

  • Forte, M., Bernardi, P. 2005. Genetic dissection of the permeability transition pore. J. Bioenerg. Biomembr. 37:121–128.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, H. 2000. Programmed cell death of tracheary elements as a paradigm in plants. Plant Mol. Biol. 44:245–253.

    Article  PubMed  CAS  Google Scholar 

  • Geitmann, A., Franklin-Tong, V. E., Emons, A. C. 2004. The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles. Cell Death Differ. 11:812–822.

    Article  PubMed  CAS  Google Scholar 

  • Geng, J. F., Klionsky, D. J. 2008. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep. 9:859–864.

    Article  PubMed  CAS  Google Scholar 

  • Giraud, E., Ho, L. H. M., Clifton, R., Carroll, A., Estavillo, G., Tan, Y. F., Howell, K. A., Ivanova, A., Pogson, B. J., Millar, A. H., Whelan, J. 2008. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147:595–610.

    Article  PubMed  CAS  Google Scholar 

  • Goodsell, D. S. 2004. The molecular perspective: Cytochrome c and apoptosis. Oncologist 9:226–227.

    Article  PubMed  Google Scholar 

  • Gozuacik, D., Bialik, S., Raveh, T., Mitou, G., Shohat, G., Sabanay, H., Mizushima, N., Yoshimori, T., Kimchi, A. 2008. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 15:1875–1886.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. R., Reed, J. C. 1998. Mitochondria and apoptosis. Science 281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J. T., Yao, N. 2004. The role and regulation of programmed cell death in plant-pathogen interactions. Cell. Microbiol. 6:201–211.

    Article  PubMed  CAS  Google Scholar 

  • Hall, D. H., Gu, G., Garcia-Anoveros, J., Gong, L., Chalfie, M., Driscoll, M. 1997. Neuropathology of degenerative cell death in Caenorhabditis elegans. J. Neurosci. 17:1033–1045.

    PubMed  CAS  Google Scholar 

  • Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., Ohsumi, Y. 2002. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129:1181–1193.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, B. A., Sun, K., Oppenheimer, D. G., Sage, T. L. 2006. Changes in mitochondrial membrane potential and accumulation of reactive oxygen species precede ultrastructural changes during ovule abortion. Planta 223:492–499.

    Article  PubMed  CAS  Google Scholar 

  • Heath, M. C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44:321–334.

    Article  PubMed  CAS  Google Scholar 

  • Hofius, D., Tsitsigiannis, D. I., Jones, J. D. G., Mundy, J. 2007. Inducible cell death in plant immunity. Semin. Cancer Biol. 17:166–187.

    Article  PubMed  CAS  Google Scholar 

  • Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D. I., Petersen, N. H. T., Mattsson, O., Jorgensen, L. B., Jones, J. D. G., Mundy, J., Petersen, M. 2009. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137:773–783.

    Article  PubMed  CAS  Google Scholar 

  • Imazu, T., Shimizu, S., Tagami, S., Matsushima, M., Nakamura, Y., Miki, T., Okuyama, A., Tsujimoto, Y. 1999. Bcl-2/E1B 19 kDa-interacting protein 3-like protein (Bnip3L) interacts with Bcl-2/Bcl-x(L) and induces apoptosis by altering mitochondrial membrane permeability. Oncogene 18(32):4523–4529.

    Article  PubMed  CAS  Google Scholar 

  • Jabs, T. 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem. Pharmacol. 57:231–245.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. 2000. Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci. 5:225–230.

    Article  CAS  Google Scholar 

  • Kang, C. H., Avery, L. 2008. To be or not to be, the level of autophagy is the question. Autophagy 4:82–84.

    PubMed  Google Scholar 

  • Kang, C., You, Y. J., Avery, L. 2007. Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev. 21:2161–2171.

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada, M., Jin, L., Yoshinaga, K., Hirata, A., Uchimiya, H. 2001. Mammalian Bax-induced plant cell death can be downregulated by overexpression of Arabidopsis Bax inhibitor-1 (AtBI-1). Proc. Natl. Acad. Sci. USA 98:12295–12300.

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada, M., Ohori, Y., Uchimiya, H. 2004. Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J. F. R., Wyllie, A. H., Currie, A. R. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M., Lim, J. H., Ahn, C. S., Park, K., Kim, G. T., Kim, W. T., Pai, H. S. 2006. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341–2355.

    Article  PubMed  CAS  Google Scholar 

  • Klionsky, D. J., Cregg, J. M., Dunn, W. A., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., Ohsumi, Y. 2003. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5:539–545.

    Article  PubMed  CAS  Google Scholar 

  • Knaapen, M. W. M., Davies, M..J., De Bie, M., Haven, A. J., Martinet, W., Kockx, M. M. 2001. Apoptotic versus autophagic cell death in heart failure. Cardiovasc. Res. 51:304–312.

    Article  PubMed  CAS  Google Scholar 

  • Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cal, J. Y., Jones, D. P., MacGregor, G. R., Wallace, D. C. 2004. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465.

    Article  PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W. L., Tena, G., Sheen, J. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Natl. Acad. Sci. USA 97:2940–2945.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., Levine, B. 2008. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9:1004–1010.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., Martin, S. J. 2005. Caspase-independent cell death. Nat. Med. 11:725–730.

    Article  PubMed  CAS  Google Scholar 

  • Kroemer, G., Galluzzi, L., Brenner, C. 2007. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87:99–163.

    Article  PubMed  CAS  Google Scholar 

  • Kusano, T., Tateda, C., Berberich, T., Takahashi, Y. 2009. Voltage-dependent anion channels: their roles in plant defense and cell death. Plant Cell Rep. 28:1301–1308.

    Article  PubMed  CAS  Google Scholar 

  • Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R., Newmeyer, D.D. 2002. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Lacomme, C., Cruz, S. S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. USA 96:7956–7961.

    Article  PubMed  CAS  Google Scholar 

  • Lam, E., Kato, N., Lawton, M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853.

    Article  PubMed  CAS  Google Scholar 

  • Leist, M., Jaattela, M. 2001. Four deaths and a funeral: from caspases to alternative mechanisms. Nat. Rev. Mol. Cell Biol. 2:589–598.

    Article  PubMed  CAS  Google Scholar 

  • Letai, A., Bassik, M. C., Walensky, L. D., Sorcinelli, M. D., Weiler, S., Korsmeyer, S. J. 2002. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192.

    Article  PubMed  CAS  Google Scholar 

  • Levine, B., Yuan, J. Y. 2005. Autophagy in cell death: an innocent convict? J. Clin. Invest. 115:2679–2688.

    Article  PubMed  Google Scholar 

  • Levine, A., Pennell, R. I., Alvarez, M. E., Palmer, R., Lamb, C. 1996. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6:427–437.

    Article  PubMed  CAS  Google Scholar 

  • Li, L.Y., Luo, L., Wang, X. D. 2001. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Liang, X. H., Kleeman, L. K., Jiang, H. H., Gordon, G., Goldman, J. E., Berry, G., Herman, B., Levine, B. 1998. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J. Virol. 72:8586–8596.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., Dinesh-Kumar, S. P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577.

    Article  PubMed  CAS  Google Scholar 

  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., Wang, X. D. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Luo S. M., Chen, Q., Cebollero, E., Xing, D. 2009. Mitochondria: one of the origins for autophagosomal membranes? Mitochondrion 9:227–231.

    Article  PubMed  CAS  Google Scholar 

  • Malerba, M., Cerana, R., Crosti, P. 2004. Comparison between the effects of fusicoccin, Tunicamycin, and Brefeldin A on programmed cell death of cultured sycamore (Acer pseudoplatanus L.) cells. Protoplasma 224:61–70.

    PubMed  CAS  Google Scholar 

  • McCabe, P. F., Leaver, C. J. 2000. Programmed cell death in cell cultures. Plant Mol. Biol. 44:359–368.

    Article  PubMed  CAS  Google Scholar 

  • McCabe, P. F., Valentine, T. A., Forsberg, L. S., Pennell, R. I. 1997a. Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241.

    PubMed  CAS  Google Scholar 

  • McCabe, P. F., Levine, A., Meijer, P. J., Tapon, N. A., Pennell, R. I. 1997b. A programmed cell death pathway activated in carrot cells cultured at low cell density. Plant J. 12:267–280.

    Article  CAS  Google Scholar 

  • Mitsuhara, I., Malik, K. A., Miura, M., Ohashi, Y. 1999. Animal cell-death suppressors Bcl-x(L) and Ced-9 inhibit cell death in tobacco plants. Curr. Biol. 9:775–778.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, M., Tada, Y., Uchii, K., Kawakami, S., Mayama, S. 2005. Catalase and alternative oxidase cooperatively regulate programmed cell death induced by beta-glucan elicitor in potato suspension cultures. Planta 220:849–853.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., Tsujimoto, Y. 2005. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658.

    Article  PubMed  CAS  Google Scholar 

  • Palmieri, L., Santoro, A., Carrari, F., Blanco, E., Nunes-Nesi, A., Arrigoni, R., Genchi, F., Fernie, A. R., Palmieri, F. 2008. Identification and characterization of adnt1, a novel mitochondrial adenine nucleotide transporter from Arabidopsis. Plant Physiol. 148:1797–1808.

    Article  PubMed  CAS  Google Scholar 

  • Pasqualini, S., Paolocci, F., Borgogni, A., Morettini, R., Ederli, L. 2007. The overexpression of an alternative oxidase gene triggers ozone sensitivity in tobacco plants. Plant Cell Environ. 30:1545–1556.

    Article  PubMed  CAS  Google Scholar 

  • Patel, S., Dinesh-Kumar, S. P. 2008. Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4:20–27.

    PubMed  CAS  Google Scholar 

  • Patel, S., Caplan, J., Dinesh-Kumar, S. P. 2006. Autophagy in the control of programmed cell death. Curr. Opin. Plant Biol. 9:391–396.

    Article  PubMed  CAS  Google Scholar 

  • Pattingre, S., Tassa, A., Qu, X. P., Garuti, R., Liang, X. H., Mizushima, N., Packer, M., Schneider, M. D., Levine, B. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, L. N., Ingle, R. A., Knight, M. R., Denby, K. J. 2009. OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis. J. Exp. Bot. 60:3727–3735.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, A. R., Suttangkakul, A., Vierstra, R. D. 2008. The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178:1339–1353.

    Article  PubMed  CAS  Google Scholar 

  • Reape, T. J., McCabe, P. F. 2008. Apoptotic-like programmed cell death in plants. New Phytol. 180:13–26.

    Article  PubMed  CAS  Google Scholar 

  • Rentel, M. C., Lecourieux, D., Ouaked, F., Usher, S. L., Petersen, L., Okamoto, H., Knight, H., Peck, S. C., Grierson, C. S., Hirt, H., Knight, M. R. 2004. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861.

    Article  PubMed  CAS  Google Scholar 

  • Robson, C. A., Vanlerberghe, G. C. 2002. Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol. 129:1908–1920.

    Article  PubMed  CAS  Google Scholar 

  • Saviani, E. E., Orsi, C. H., Oliveira, J. F. P., Pinto-Maglio, C. A. F., Salgado, I. 2002. Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death. FEBS Lett. 510:136–140.

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., Peter, M. E. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687.

    Article  PubMed  CAS  Google Scholar 

  • Schimmer, A. D. 2004. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 64:7183–7190.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., Czaja, M. J. 2009. Autophagy regulates lipid metabolism. Nature 458:1131–1135.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., Levine, A. 1999. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443.

    PubMed  CAS  Google Scholar 

  • Stein, J. C., Hansen, G. 1999. Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol. 121:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y. L., Zhao, Y., Hong, X., Zhai, Z. H. 1999. Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett. 462:317–321.

    Article  PubMed  CAS  Google Scholar 

  • Surpin, M., Zheng, H. J., Morita, M. T., Saito, C., Avila, E., Blakeslee, J. J., Bandyopadhyay, A., Kovaleva, V., Carter, D., Murphy, A., Tasaka, M., Raikhel, N. 2003. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15:2885–2899.

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove, L. J., Fait, A., Nunes-Nesi, A., Williams, T., Fernie, A. R. 2007. The mitochondrion: an integration point of cellular metabolism and signalling. Crit. Rev. Plant Sci. 26:17–43.

    Article  CAS  Google Scholar 

  • Tateda, C., Yamashita, K., Takahashi, F., Kusano, T., Takahashi, Y. 2009. Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death. Plant Cell Rep. 28:41–51.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S. G., Franklin-Tong, V. E. 2004. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C. B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, A. R., Vierstra, R. D. 2005. Autophagic recycling: lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 8:165–173.

    Article  PubMed  CAS  Google Scholar 

  • Tiwari, B. S., Belenghi, B., Levine, A. 2002. Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol. 128:1271–1281.

    Article  PubMed  CAS  Google Scholar 

  • Townley, H. E., McDonald, K., Jenkins, G. I., Knight, M. R., Leaver, C.J. 2005. Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. Biol. Chem. 386:161–166.

    Article  PubMed  CAS  Google Scholar 

  • Vacca, R. A., de Pinto, M. C., Valenti, D., Passarella, S., Marra, E., De Gara, L. 2004. Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco bright-yellow 2 cells. Plant Physiol. 134:1100–1112.

    Article  PubMed  CAS  Google Scholar 

  • Vacca, R. A., Valenti, D., Bobba, A., Merafina, R. S., Passarella, S., Marra, E. 2006. Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco bright-yellow 2 cells en route to heat shock-induced cell death. Plant Physiol. 141:208–219.

    Article  PubMed  CAS  Google Scholar 

  • Vahsen, N., Cande, C., Briere, J., Benit, P., Rustin, P., Kroemer, G. 2004. The absence of apoptosis-inducing factor AIF induces complex I deficiency. Biochim. Biophys. Acta-Bioenerg. 1657:83–83.

    Google Scholar 

  • Vande Velde, C., Cizeau, J., Dubik, D., Alimonti, J., Brown, T., Israels, S., Hakem, R., Greenberg, A. H. 2000. BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol. Cell. Biol. 20:5454–5468.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C., Robson, C. A., Yip, J. Y. H. 2002. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiol. 129:1829–1842.

    Article  PubMed  CAS  Google Scholar 

  • Walter, L., Hajnoczky, G. 2005. Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J. Bioenerg. Biomembr. 37:191–206.

    Article  CAS  Google Scholar 

  • Wheeler, M. J., de Graaf, B. H. J., Hadjiosif, N., Perry, R. M., Poulter, N. S., Osman, K., Vatovec, S., Harper, A., Franklin, F. C. H., Franklin-Tong, V. E. 2009. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459:992–995.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Contento, A. L., Bassham, D. C. 2005. AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 42:535–546.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, Y., Contento, A. L., Bassham, D. 2007a. Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3:257–258.

    PubMed  CAS  Google Scholar 

  • Xiong, Y., Contento, A. L., Nguyen, P. Q., Bassham, D. C. 2007b. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol. 143:291–299.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Hanson, M. R. 2000. Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol. 122:1323–1333.

    Article  PubMed  CAS  Google Scholar 

  • Yao, N., Imai, S., Tada, Y., Nakayashiki, H., Tosa, Y., Park, P., Mayama, S. 2002. Apoptotic cell death is a common response to pathogen attack in oats. Mol. Plant-Microbe Interact. 15:1000–1007.

    Article  PubMed  CAS  Google Scholar 

  • Yao, N., Eisfelder, B. J., Marvin, J., Greenberg, J. T. 2004. The mitochondrion – an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J. 40:596–610.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda, M., D’Sa-Eipper, C., Gong, X. L., Chinnadurai, G. 1998. Regulation of apoptosis by a Caenorhabditis elegans BNIP3 homolog. Oncogene 17:2525–2530.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimoto, K., Hanaoka, H., Noda, T., Sato, S., Kato, T., Tabata, S., Ohsumi, Y. 2003. Analysis of AtAPG8 families in plant autophagy. Plant Cell Physiol. 44:S202.

    Google Scholar 

  • Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., Shirasu, K. 2009. Autophagy negatively regulates cell death by controlling npr1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927.

    Article  PubMed  CAS  Google Scholar 

  • Yu, X. H., Perdue, T. D., Heimer, Y. M., Jones, A. M. 2002. Mitochondrial involvement in tracheary element programmed cell death. Cell Death Differ. 9:189–198.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Qi, H. Y., Taylor, R., Xu, W. H., Liu, L. F., Jin, S. K. 2007. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3:337–346.

    PubMed  CAS  Google Scholar 

  • Zuzarte-Luis, V., Hurle, J. M. 2002. Programmed cell death in the developing limb. Int. J. Dev. Biol. 46:871–876.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul F. McCabe .

Editor information

Editors and Affiliations

Glossary

Apoptosis:

A caspase-dependent form of programmed cell death in animal cells.

Apoptotic-like programmed cell death:

A regulated form of cell death in plants that results in a characteristic cell morphology caused by cell shrinkage.

Autophagy:

“Self-eating” – lysosome or vacuole-dependent processing and recycling of macromolecules.

Intermembrane space (IMS):

The intermembrane space (space between outer and inner mitochondrial membranes) contains a number of proteins that can be released to activate cell death cascades.

Mitochondrial permeability transition (MPT):

An increase in the permeability of the mitochondrial membranes that can lead to collapse of mitochondrial membrane potential, production of ROS, termination of ATP synthesis, and release of matrix solutes. MPT results from opening of mitochondrial permeability transition pores.

Necrosis:

An unregulated form of cell death – often as a result of severe stress.

Outer mitochondrial membrane (OMM):

Localization site for a number of PCD controlling proteins.

Permeability transition pore (PTP):

A polyprotein complex formed at contact sites between the mitochondrial inner and outer membranes.

Programmed cell death (PCD):

The process of organized destruction of the cell.

Reactive oxygen species (ROS):

Any of a number of highly reactive forms of oxygen. At low levels, ROS may function in cell signaling processes. At higher levels, ROS will damage cellular macromolecules.

Tracheary element (TE):

Xylem cells, which die at maturity, leaving their lignified remains, which conduct water and minerals throughout plant.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Diamond, M., McCabe, P.F. (2011). Mitochondrial Regulation of Plant Programmed Cell Death. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_17

Download citation

Publish with us

Policies and ethics