Skip to main content

Mitochondrial Electron Transport and Plant Stress

  • Chapter
  • First Online:
Plant Mitochondria

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

Due to the sessile nature of plants, it is crucial for their survival and growth that they can handle a constantly changing, and thus stressful, ambient environment by modifying their structure and metabolism. The central metabolism of plants is characterized by many alternative options for metabolic pathways, which allow a wide range of adjustments of metabolic processes in response to environmental variations. Many of the metabolic pathways in plants involve the processing of redox compounds and the use of adenylates. They converge at the mitochondrial electron transport chain (ETC) where redox compounds from carbon degradation are used for powering ATP synthesis. The standard ETC contains three sites of energy conservation in complexes I, III, and IV, which are in common with most other eukaryotes. However, the complexity of the plant metabolic system is mirrored in the ETC. In addition to the standard enzymes, plants have a large set of supplementary electron transport enzymes. Many of these, such as the external and internal NAD(P)H dehydrogenases, proline dehydrogenase, and glycerol-3-phosphate dehydrogenase, feed into the ubiquinone pool and they therefore bypass the first site of energy conservation in the ETC. The alternative oxidase provides a non-energy-conserving alternative to electron transport through complexes III and IV. There also appears to be a special coupling between specific NAD(P)H dehydrogenases and specific members of the alternative oxidase family. These additional enzymes therefore give a great flexibility in the type and origin of the substrate, the electron transport route(s) used, and the energy yield. At the same time special reactions, such as ascorbate biosynthesis, can take place. In this way, the mitochondrial ETC can mediate major adjustments in cellular metabolism that is important for cellular function under a great variety of stress conditions such as low temperature and drought.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AOX :

Alternative oxidase

ETC :

Electron transport chain

GalDH :

l-galactono-1,4-lactone dehydrogenase

P5C :

Delta-1-pyrroline-5-carboxylate

ROS :

Reactive oxygen species

UCP :

Uncoupling protein

UQ :

Ubiquinone

References

  • Adam, Z., Adamska, I., Nakabayashi, K., Ostersetzer, O., Haussuhl, K., Manuell, A., Zheng, B., Vallon, O., Rodermel, S. R., Shinozaki, K., Clarke, A. K. 2001. Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol. 125:1912–1918.

    Google Scholar 

  • Allan, W. L., Simpson, J. P., Clark, S. M., Shelp, B. J. 2008. Gamma-hydroxybutyrate accumulation in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation by redox balance and glyoxylate reductase isoforms. J. Exp. Bot. 59:2555–2564.

    Article  PubMed  CAS  Google Scholar 

  • Atkin, O. K., Loveys, B. R., Atkinson, L. J., Pons, T. L. 2006. Phenotypic plasticity and growth temperature: understanding interspecific variability. J. Exp. Bot. 57:267–281.

    Article  PubMed  CAS  Google Scholar 

  • Atlante, A., de Bari, L., Valenti, D., Pizzuto, R., Paventi, G., Passarella, S. 2005. Transport and metabolism of D-lactate in Jerusalem artichoke mitochondria. Biochim. Biophys. Acta 1708:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Bartoli, C. G., Pastori, G. M., Foyer, C. H. 2000. Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol. 123:335–343.

    Article  PubMed  CAS  Google Scholar 

  • Bartoli, C. G., Yu, J., Gomez, F., Fernandez, L., McIntosh, L., Foyer, C. H. 2006. Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J. Exp. Bot. 57:1621–1631.

    Article  PubMed  CAS  Google Scholar 

  • Bartoli, C. G., Tambussi, E. A., Diego, F., Foyer, C. H. 2009. Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett. 583:118–122.

    Article  PubMed  CAS  Google Scholar 

  • Benamar, A., Rolletschek, H., Borisjuk, L., Avelange-Macherel, M. H., Curien, G., Mostefai, H. A., Andriantsitohaina, R., Macherel, D. 2008. Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. Biochim. Biophys. Acta 1777:1268–1275.

    Article  PubMed  CAS  Google Scholar 

  • Berthold, D. A., Stenmark, P. 2003. Membrane-bound diiron carboxylate proteins. Annu. Rev. Plant Biol. 54:497–517.

    Article  PubMed  CAS  Google Scholar 

  • Bienert, G. P., Møller, A. L., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., Jahn, T. P. 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282:1183–1192.

    Article  PubMed  CAS  Google Scholar 

  • Boccara, M., Boue, C., Garmier, M., De Paepe, R., Boccara, A. C. 2001. Infra-red thermography revealed a, role for mitochondria in pre-symptomatic cooling during harpin-induced hypersensitive response. Plant J. 28:663–670.

    Article  PubMed  CAS  Google Scholar 

  • Borisjuk, L., Macherel, D., Benamar, A., Wobus, U., Rolletschek, H. 2007. Low oxygen sensing and balancing in plant seeds: a role for nitric oxide. New Phytol. 176:813–823.

    Article  PubMed  CAS  Google Scholar 

  • Budar, F., Touzet, P., De Paepe, R. 2003. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117:3–16.

    Article  PubMed  CAS  Google Scholar 

  • Clifton, R., Lister, R., Parker, K. L., Sappl, P. G., Elhafez, D., Millar, A. H., Day, D. A., Whelan, J. 2005. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol. Biol. 58:193–212.

    Article  PubMed  CAS  Google Scholar 

  • Clifton, R., Millar, A. H., Whelan, J. 2006. Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim. Biophys. Acta 1757:730–741.

    Article  PubMed  CAS  Google Scholar 

  • Considine, M. J., Holtzapffel, R. C., Day, D. A., Whelan, J., Millar, A. H. 2002. Molecular distinction between alternative oxidase from monocots and dicots. Plant Physiol. 129:949–953.

    Article  PubMed  CAS  Google Scholar 

  • Considine, M. J., Goodman, M., Echtay, K. S., Laloi, M., Whelan, J., Brand, M. D., Sweetlove, L. J. 2003. Superoxide stimulates a proton leak in potato mitochondria that is related to the activity of uncoupling protein. J. Biol. Chem. 278:22298–22302.

    Article  PubMed  CAS  Google Scholar 

  • Cowley, R. C., Palmer, J. M. 1978. Interaction of citrate and calcium in regulating oxidation of exogenous NADH in plant mitochondria. Plant Sci. Lett. 11:345–350.

    Article  CAS  Google Scholar 

  • Crawford, N. M., Guo, F. Q. 2005. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci. 10:195–200.

    Article  PubMed  CAS  Google Scholar 

  • Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., van der Graaff, E., Kunzee, R., Frommer, W. B. 2004. The role of ∆1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425.

    Article  PubMed  CAS  Google Scholar 

  • Di Martino, C., Pizzuto, R., Pallotta, M. L., De Santis, A., Passarella, S. 2006. Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings. Planta 223:1123–1133.

    Article  PubMed  CAS  Google Scholar 

  • Djajanegara, I., Finnegan, P. M., Mathieu, C., McCabe, T., Whelan, J., Day, D. A. 2002. Regulation of alternative oxidase gene expression in soybean. Plant Mol. Biol. 50:735–742.

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul, C., Driscoll, S., Cornic, G., De Paepe, R., Foyer, C. H., Noctor, G. 2003a. Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients. Plant Physiol. 131:264–275.

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chétrit, P., Foyer, C. H., De Paepe, R. 2003b. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226.

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul, C., Lelarge, C., Prioul, J. L., De Paepe, R., Foyer, C. H., Noctor, G. 2005. Mitochondria-driven changes in leaf NAD status exert a crucial influence on the control of nitrate assimilation and the integration of carbon and nitrogen metabolism. Plant Physiol. 139:64–78.

    Article  PubMed  CAS  Google Scholar 

  • Eastmond, P. J. 2004. Glycerol-insensitive Arabidopsis mutants: Gli1 seedlings lack glycerol kinase, accumulate glycerol and are more resistant to abiotic stress. Plant J. 37:617–625.

    Article  PubMed  CAS  Google Scholar 

  • Elhafez, D., Murcha, M. W., Clifton, R., Soole, K. L., Day, D. A., Whelan, J. 2006. Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression. Plant Cell Physiol. 47:43–54.

    Article  PubMed  CAS  Google Scholar 

  • Elthon, T. E., Stewart, C. R. 1981. Sub-mitochondrial location and electron-transport characteristics of enzymes involved in proline oxidation. Plant Physiol. 67:780–784.

    Article  PubMed  CAS  Google Scholar 

  • Engqvist, M., Drincovich, M. F., Flugge, U. I., Maurino, V. G. 2009. Two D-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and beta-oxidation pathways. J. Biol. Chem. 284:25026–25037.

    Article  PubMed  CAS  Google Scholar 

  • Escobar, M. A., Geisler, D. A., Rasmusson, A. G. 2006. Reorganization of the alternative pathways of the Arabidopsis respiratory chain by nitrogen supply: opposing effects of ammonium and nitrate. Plant J. 45:775–788.

    Article  PubMed  CAS  Google Scholar 

  • Fernie, A. R., Carrari, F., Sweetlove, L. J. 2004. Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr. Opin. Plant Biol. 7:254–261.

    Article  PubMed  CAS  Google Scholar 

  • Fiorani, F., Umbach, A. L., Siedow, J. N. 2005. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol. 139:1795–1805.

    Article  PubMed  CAS  Google Scholar 

  • Forlani, G., Scainelli, D., Nielsen, E. 1997. Delta(1)-pyrroline-5-carboxylate dehydrogenase from cultured cells of potato – purification and properties. Plant Physiol. 113:1413–1418.

    PubMed  CAS  Google Scholar 

  • Foyer, C. H., Noctor, G. 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal. 11:861–905.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C. H., Bloom, A., Queval, G., Noctor, G. 2009. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu. Rev. Plant Biol. 60:455–484.

    Article  PubMed  CAS  Google Scholar 

  • Fujiki, Y., Sato, T., Ito, M., Watanabe, A. 2000. Isolation and characterization of cDNA, clones for the E1 beta and E2 subunits of the branched-chain alpha-ketoacid dehydrogenase complex in Arabidopsis. J. Biol. Chem. 275:6007–6013.

    Article  PubMed  CAS  Google Scholar 

  • Gadjev, I., Vanderauwera, S., Gechev, T. S., Laloi, C., Minkov, I. N., Shulaev, V., Apel, K., Inze, D., Mittler, R., Van Breusegem, F. 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141:436–445.

    Article  PubMed  CAS  Google Scholar 

  • Geisler, D. A., Broselid, C., Hederstedt, L., Rasmusson, A. G. 2007. Ca2+-binding and Ca2+-independent respiratory NADH and NADPH dehydrogenases of Arabidopsis thaliana. J. Biol. Chem. 282:28455–28464.

    Article  PubMed  CAS  Google Scholar 

  • Gelhaye, E., Rouhier, N., Gerard, J., Jolivet, Y., Gualberto, J., Navrot, N., Ohlsson, P. I., Wingsle, G., Hirasawa, M., Knaff, D. B., Wang, H., Dizengremel, P., Meyer, Y., Jacquot, J. P. 2004. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc. Natl. Acad. Sci. U.S.A. 101:14545–14550.

    Article  PubMed  CAS  Google Scholar 

  • Gibon, Y., Sulpice, R., Larher, F. 2000. Proline accumulation in canola leaf discs subjected to osmotic stress is related to the loss of chlorophylls and to the decrease of mitochondrial activity. Physiol. Plant. 110:469–476.

    Article  CAS  Google Scholar 

  • Giraud, E., Ho, L. H., Clifton, R., Carroll, A., Estavillo, G., Tan, Y. F., Howell, K. A., Ivanova, A., Pogson, B. J., Millar, A. H., Whelan, J. 2008. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147:595–610.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, K. J., Zabalza, A., van Dongen, J. T. 2009. Regulation of respiration when the oxygen availability changes. Physiol. Plant. 137:383–391.

    Article  PubMed  CAS  Google Scholar 

  • Gutierres, S., Sabar, M., Lelandais, C., Chetrit, P., Diolez, P., Degand, H., Boutry, M., Vedel, F., de Kouchkovsky, Y., De Paepe, R. 1997. Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proc. Natl. Acad. Sci. U.S.A. 94:3436–3441.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., Gutteridge, J. M. C. 2007. Free Radicals in Biology and Medicine. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Hare, P. D., Cress, W. A., van Staden, J. 1999. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J. Exp. Bot. 50:413–434.

    CAS  Google Scholar 

  • Heazlewood, J. L., Howell, K. A., Millar, A. H. 2003. Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim. Biophys. Acta 1604:159–169.

    Article  PubMed  CAS  Google Scholar 

  • Herrero, A., Barja, G. 1997. Sites and mechanisms responsible for the low rate of free radical production of heart mitochondria in the long-lived pigeon. Mech. Ageing Dev. 98:95–111.

    Article  PubMed  CAS  Google Scholar 

  • Ho, L. H., Giraud, E., Lister, R., Thirkettle-Watts, D., Low, J., Clifton, R., Howell, K. A., Carrie, C., Donald, T., Whelan, J. 2007. Characterization of the regulatory and expression context of an alternative oxidase gene provides insights into cyanide-insensitive respiration during growth and development. Plant Physiol. 143:1519–1533.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., von Rad, U., Durner, J. 2002. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923.

    Article  PubMed  CAS  Google Scholar 

  • Huq, S., Palmer, J. M. 1978. Superoxide and hydrogen-peroxide production in cyanide resistant Arum maculatum mitochondria. Plant Sci. Lett. 11:351–358.

    Article  CAS  Google Scholar 

  • Ilangovan, G., Venkatakrishnan, C. D., Bratasz, A., Osinbowale, S., Cardounel, A. J., Zweier, J. L., Kuppusamy, P. 2006. Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac h9c2 cells. Am. J. Physiol. Cell Physiol. 290:C313–324.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki, K., Larson, T. R., Schauer, N., Fernie, A. R., Graham, I. A., Leaver, C. J. 2005. The critical role of Arabidopsis electron-transfer flavoprotein: ubiquinone oxidoreductase during dark-induced starvation. Plant Cell 17:2587–2600.

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki, K., Schauer, N., Larson, T. R., Graham, I. A., Fernie, A. R., Leaver, C. J. 2006. The mitochondrial electron transfer flavoprotein complex is essential for survival of Arabidopsis in extended darkness. Plant J. 47:751–760.

    Article  PubMed  CAS  Google Scholar 

  • Jiao, S. X., Thornsberry, J. M., Elthon, T. E., Newton, K. J. 2005. Biochemical and molecular characterization of photosystem I deficiency in the NCS6 mitochondrial mutant of maize. Plant Mol. Biol. 57:303–313.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, E., Olsson, O., Nyström, T. 2004a. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J. Biol. Chem. 279:22204–22208.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, F. I., Michalecka, A. M., Møller, I. M., Rasmusson, A. G. 2004b. Oxidation and reduction of pyridine nucleotides in alamethicin-permeabilised plant mitochondria. Biochem. J. 380:193–202.

    Article  PubMed  Google Scholar 

  • Kalapos, M. P. 1999. Methylglyoxal in living organisms – chemistry, biochemistry, toxicology and biological implications. Toxicol. Lett. 110:145–175.

    Article  PubMed  CAS  Google Scholar 

  • Karpova, O. V., Kuzmin, E. V., Elthon, T. E., Newton, K. J. 2002. Differential expression of alternative oxidase genes in maize mitochondrial mutants. Plant Cell 14:3271–3284.

    Article  PubMed  CAS  Google Scholar 

  • Koppen, M., Langer, T. 2007. Protein degradation within mitochondria: versatile activities of aaa proteases and other peptidases. Crit. Rev. Biochem. Mol. Biol. 42:221–242.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen, B. K., Askerlund, P., Bykova, N. V., Egsgaard, H., Møller, I. M. 2004. Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851.

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen, K. A., Jensen, P. E., Møller, I. M., Schulz, A. 2009. Monitoring reactive oxygen species formation and localisation in living cells by use of the fluorescent probe cm-H(2)dcfda and confocal laser microscopy. Physiol. Plant. 136:369–383.

    Article  PubMed  CAS  Google Scholar 

  • Lemasters, J. J. 2005. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8:3–5.

    Article  PubMed  CAS  Google Scholar 

  • Lennon, A. M., Neuenschwander, U. H., Ribas-Carbo, M., Giles, L., Ryals, J. A., Siedow, J. N. 1997. The effects of salicylic acid and tobacco mosaic virus infection on the alternative oxidase of tobacco. Plant Physiol. 115:783–791.

    PubMed  CAS  Google Scholar 

  • Liu, Y. J., Norberg, F. E., Szilagyi, A., De Paepe, R., Ã…kerlund, H. E., Rasmusson, A. G. 2008. The mitochondrial external NADPH dehydrogenase modulates the leaf NADPH/NADP+ ratio in transgenic Nicotiana sylvestris. Plant Cell Physiol. 49:251–263.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. J., Nunes-Nesi, A., Wallström, S. V., Lager, I., Michalecka, A. M., Norberg, F. E., Widell, S., Fredlund, K. M., Fernie, A. R., Rasmusson, A. G. 2009. A redox-mediated modulation of stem bolting in transgenic Nicotiana sylvestris differentially expressing the external mitochondrial NADPH dehydrogenase. Plant Physiol. 150:1248–1259.

    Article  PubMed  CAS  Google Scholar 

  • Mani, S., Van De Cotte, B., Van Montagu, M., Verbruggen, N. 2002. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol. 128:73–83.

    Article  PubMed  CAS  Google Scholar 

  • Marienfeld, J. R., Newton, K. J. 1994. The maize NCS2 abnormal growth mutant has a chimeric nad4-nad7 mitochondrial gene and is associated with reduced complex I function. Genetics 138:855–863.

    PubMed  CAS  Google Scholar 

  • Matic, S., Geisler, D. A., Møller, I. M., Widell, S., Rasmusson, A. G. 2005. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. Cv bright yellow) suspension cells. Biochem. J. 389:695–704.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, D. P., Wang, Y., McIntosh, L. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U.S.A. 96:8271–8276.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, A., Vanlerberghe, G. 2004. Branched mitochondrial electron transport in the animalia: presence of alternative oxidase in several animal phyla. IUBMB Life 56:333–341.

    Article  PubMed  CAS  Google Scholar 

  • Melo, A. M. P., Roberts, T. H., Møller, I. M. 1996. Evidence for the presence of two rotenone-insensitive NAD(P)H dehydrogenases on the inner surface of the inner membrane of potato tuber mitochondria. Biochim. Biophys. Acta 1276:133–139.

    Article  Google Scholar 

  • Meyer, E. H., Tomaz, T., Carroll, A. J., Estavillo, G., Delannoy, E., Tanz, S. K., Small, I. D., Pogson, B. J., Millar, A. H. 2009. Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. Plant Physiol. 151:603–619.

    Article  PubMed  CAS  Google Scholar 

  • Michalecka, A. M., Svensson, Ã…. S., Johansson, F. I., Agius, S. C., Johanson, U., Brennicke, A., Binder, S., Rasmusson, A. G. 2003. Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol. 133:642–652.

    Google Scholar 

  • Michalecka, A. M., Agius, S. C., Møller, I. M., Rasmusson, A. G. 2004. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic Nicotiana sylvestris. Plant J. 37:415–425.

    Article  PubMed  CAS  Google Scholar 

  • Millar, A. H., Wiskich, J. T., Whelan, J., Day, D. A. 1993. Organic-acid activation of the alternative oxidase of plant mitochondria. FEBS Lett. 329:259–262.

    Article  PubMed  CAS  Google Scholar 

  • Millar, A. H., Hoefnagel, M. H. N., Day, D. A., Wiskich, J. T. 1996. Specificity of the organic acid activation of alternative oxidase in plant mitochondria. Plant Physiol. 111:613–618.

    PubMed  CAS  Google Scholar 

  • Millar, A. H., Mittova, V., Kiddle, G., Heazlewood, J. L., Bartoli, C. G., Theodoulou, F. L., Foyer, C. H. 2003. Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol. 133:443–447.

    Article  PubMed  CAS  Google Scholar 

  • Millar, A. H., Trend, A. E., Heazlewood, J. L. 2004. Changes in the mitochondrial proteome during the anoxia to air transition in rice focus around cytochrome-containing respiratory complexes. J. Biol. Chem. 279:39471–39478.

    Article  PubMed  CAS  Google Scholar 

  • Millenaar, F. F., Lambers, H. 2003. The alternative oxidase: in vivo regulation and function. Plant Biol. 5:2–15.

    Article  CAS  Google Scholar 

  • Miller, G., Honig, A., Stein, H., Suzuki, N., Mittler, R., Zilberstein, A. 2009. Unraveling delta(1)-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J. Biol. Chem. 284:26482–26492.

    Article  PubMed  CAS  Google Scholar 

  • Møller, I. M. 1997. The oxidation of cytosolic NAD(P)H by external NAD(P)H dehydrogenases in the respiratory chain of plant mitochondria. Physiol. Plant. 100:85–90.

    Article  Google Scholar 

  • Møller, I. M. 2001. Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:561–591.

    Article  PubMed  Google Scholar 

  • Møller, I. M., Kristensen, B. K. 2004. Protein oxidation in plant mitochondria as a stress indicator. Photochem. Photobiol. Sci. 3:730–735.

    Article  PubMed  CAS  Google Scholar 

  • Møller, I. M., Kristensen, B. K. 2006. Protein oxidation in plant mitochondria detected as oxidized tryptophan. Free Radic. Biol. Med. 40:430–435.

    Article  PubMed  CAS  Google Scholar 

  • Møller, I. M., Rasmusson, A. G. 1998. The role of NADP in the mitochondrial matrix. Trends Plant Sci. 3:21–27.

    Article  Google Scholar 

  • Møller, I. M., Jensen, P. E., Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58:459–481.

    Article  PubMed  CAS  Google Scholar 

  • Moore, A. L., Albury, M. S., Crichton, P. G., Affourtit, C. 2002. Function of the alternative oxidase: is it still a scavenger? Trends Plant Sci. 7:478–481.

    Article  PubMed  CAS  Google Scholar 

  • Moore, C. S., Cook-Johnson, R. J., Rudhe, C., Whelan, J., Day, D. A., Wiskich, J. T., Soole, K. L. 2003. Identification of AtNDI1, an internal non-phosphorylating NAD(P)H dehydrogenase in Arabidopsis mitochondria. Plant Physiol. 133:1968–1978.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, S., Sen, S., Majhi, B., Das, K. P., Kar, M. 2007. Methyl glyoxal elevation is associated with oxidative stress in rheumatoid arthritis. Free Radic. Res. 41:507–514.

    Article  PubMed  CAS  Google Scholar 

  • Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., Shinozaki, K. 1999. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461:205–210.

    Article  PubMed  CAS  Google Scholar 

  • Nanjo, T., Fujita, M., Seki, M., Kato, T., Tabata, S., Shinozaki, K. 2003. Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol. 44:541–548.

    Article  PubMed  CAS  Google Scholar 

  • Nash, D., Wiskich, J. T. 1983. Properties of substantially chlorophyll free pea leaf mitochondria prepared by sucrose density gradient separation. Plant Physiol. 71:627–634.

    Article  PubMed  CAS  Google Scholar 

  • Neill, S., Desikan, R., Hancock, J. 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5:388–395.

    Article  PubMed  CAS  Google Scholar 

  • Newton, K. J., Gabay-Laughnan, S., De Paepe, R. 2004. Mitochondrial mutations in plants. In: eds. D. A. Day, A. H. Millar, J. Whelan. Plant Mitochondria: From Genome to Function, pp. 121–142. Dordrecht: Kluwer.

    Google Scholar 

  • Noctor, G., Foyer, C. H. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249–279.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., Dutilleul, C., De Paepe, R., Foyer, C. H. 2004. Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. J. Exp. Bot. 55:49–57.

    Article  PubMed  CAS  Google Scholar 

  • Noctor, G., De Paepe, R., Foyer, C. H. 2007. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 12:125–134.

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi, A., Carrari, F., Lytovchenko, A., Smith, A. M., Loureiro, M. E., Ratcliffe, R. G., Sweetlove, L. J., Fernie, A. R. 2005. Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol. 137:611–622.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, K. M., Dirmeier, R., Engle, M., Poyton, R. O. 2004. Mitochondrial protein oxidation in yeast mutants lacking manganese-(mnsod) or copper- and zinc-containing superoxide dismutase (cuznsod): evidence that mnsod and cuznsod have both unique and overlapping functions in protecting mitochondrial proteins from oxidative damage. J. Biol. Chem. 279:51817–51827.

    Article  PubMed  CAS  Google Scholar 

  • Ordog, S. H., Higgins, V. J., Vanlerberghe, G. C. 2002. Mitochondrial alternative oxidase is not a critical component of plant viral resistance but may play a role in the hypersensitive response. Plant Physiol. 129:1858–1865.

    Article  PubMed  CAS  Google Scholar 

  • Pineau, B., Layoune, O., Danon, A., De Paepe, R. 2008. L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J. Biol. Chem. 283:32500–32505.

    Article  PubMed  CAS  Google Scholar 

  • Price, J., Laxmi, A., St. Martin, S. K., Jang, J. C. 2004. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150.

    Article  PubMed  CAS  Google Scholar 

  • Purvis, A. C., Shewfelt, R. L. 1993. Does the alternative pathway ameliorate chilling injury in sensitive plant tissues. Physiol. Plant. 88:712–718.

    Article  CAS  Google Scholar 

  • Rasmusson, A. G., Escobar, M. A. 2007. Light and diurnal regulation of plant respiratory gene expression. Physiol. Plant. 129:57–67.

    Article  CAS  Google Scholar 

  • Rasmusson, A. G., Møller, I. M. 1991. NAD(P)H dehydrogenases on the inner surface of the inner mitochondrial membrane studied using inside-out submitochondrial particles. Physiol. Plant. 83:357–365.

    Article  CAS  Google Scholar 

  • Rasmusson, A. G., Svensson, A. S., Knoop, V., Grohmann, L., Brennicke, A. 1999. Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria. Plant J. 20:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, A. G., Soole, K. L., Elthon, T. E. 2004. Alternative NAD(P)H dehydrogenases of plant mitochondria. Annu. Rev. Plant Biol. 55:23–39.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, A. G., Geisler, D. A., Møller, I. M. 2008. The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria. Mitochondrion 8:47–60.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, A. G., Fernie, A. R., van Dongen, J. T. 2009. Alternative oxidase: a defence against metabolic fluctuations? Physiol. Plant 137:371–382.

    Article  PubMed  CAS  Google Scholar 

  • Rayapati, P. J., Stewart, C. R. 1991. Solubilization of a proline dehydrogenase from maize (Zea mays L) mitochondria. Plant Physiol. 95:787–791.

    Article  PubMed  CAS  Google Scholar 

  • Rhoads, D. M., Umbach, A. L., Subbaiah, C. C., Siedow, J. N. 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141:357–366.

    Article  PubMed  CAS  Google Scholar 

  • Ribas-Carbo, M., Taylor, N. L., Giles, L., Busquets, S., Finnegan, P. M., Day, D. A., Lambers, H., Medrano, H., Berry, J. A., Flexas, J. 2005. Effects of water stress on respiration in soybean leaves. Plant Physiol. 139:466–473.

    Article  PubMed  CAS  Google Scholar 

  • Robson, C. A., Vanlerberghe, G. C. 2002. Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol. 129:1908–1920.

    Article  PubMed  CAS  Google Scholar 

  • Sabar, M., De Paepe, R., de Kouchkovsky, Y. 2000. Complex I impairment, respiratory compensations, and photosynthetic decrease in nuclear and mitochondrial male sterile mutants of Nicotiana sylvestris. Plant Physiol. 124:1239–1249.

    Article  PubMed  CAS  Google Scholar 

  • Scharte, J., Schon, H., Tjaden, Z., Weis, E., von Schaewen, A. 2009. Isoenzyme replacement of glucose-6-phosphate dehydrogenase in the cytosol improves stress tolerance in plants. Proc. Natl. Acad. Sci. U.S.A. 106:8061–8066.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzländer, M., Fricker, M. D., Sweetlove, L. J. 2009. Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim. Biophys. Acta 1787:468–475.

    Article  PubMed  CAS  Google Scholar 

  • Shen, W., Wei, Y., Dauk, M., Zheng, Z., Zou, J. 2003. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants. FEBS Lett. 536:92–96.

    Article  PubMed  CAS  Google Scholar 

  • Shen, W. Y., Wei, Y. D., Dauk, M., Tan, Y. F., Taylor, D. C., Selvaraj, G., Zou, J. T. 2006. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis. Plant Cell 18:422–441.

    Article  PubMed  CAS  Google Scholar 

  • Siedow, J. N., Umbach, A. L. 2000. The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity. Biochim. Biophys. Acta 1459:432–439.

    Article  PubMed  CAS  Google Scholar 

  • Sieger, S. M., Kristensen, B. K., Robson, C. A., Amirsadeghi, S., Eng, E. W., Abdel-Mesih, A., Møller, I. M., Vanlerberghe, G. C. 2005. The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells. J. Exp. Bot. 56:1499–1515.

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek, S. L., Reddy, M. K., Sopory, S. K. 2003. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc. Natl. Acad. Sci. U.S.A. 100:14672–14677.

    Article  PubMed  CAS  Google Scholar 

  • Singla-Pareek, S. L., Yadav, S. K., Pareek, A., Reddy, M. K., Sopory, S. K. 2006. Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. Plant Physiol. 140:613–623.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. M., Stitt, M. 2007. Coordination of carbon supply and plant growth. Plant Cell Environ. 30:1126–1149.

    Article  PubMed  CAS  Google Scholar 

  • Stoimenova, M., Igamberdiev, A. U., Gupta, K. J., Hill, R. D. 2007. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. Planta 226:465–474.

    Article  PubMed  CAS  Google Scholar 

  • Stupnikova, I., Benamar, A., Tolleter, D., Grelet, J., Borovskii, G., Dorne, A. J., Macherel, D. 2006. Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures. Plant Physiol. 140:326–335.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, Ã…. S., Rasmusson, A. G. 2001. Light-dependent gene expression for proteins in the respiratory chain of potato leaves. Plant J. 28:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, Ã…. S., Johansson, F. I., Møller, I. M., Rasmusson, A. G. 2002. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Lett. 517:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Sweetlove, L. J., Møller, I. M. 2009. Oxidation of proteins in plants – mechanisms and consequences. Adv. Bot. Res. 52:1–23.

    Article  Google Scholar 

  • Sweetlove, L. J., Heazlewood, J. L., Herald, V., Holtzapffel, R., Day, D. A., Leaver, C. J., Millar, A. H. 2002. The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 32:891–904.

    Article  PubMed  CAS  Google Scholar 

  • Szal, B., Lukawska, K., Zdolinska, I., Rychter, A. M. 2009. Chilling stress and mitochondrial genome rearrangement in the MSC16 cucumber mutant affect the alternative oxidase and antioxidant defense system to a similar extent. Physiol. Plant. 137:435–445.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, N. L., Day, D. A., Millar, A. H. 2002. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J. Biol. Chem. 277:42663–42668.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. W., Fahy, E., Murray, J., Capaldi, R. A., Ghosh, S. S. 2003. Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J. Biol. Chem. 278:19587–19590.

    Article  PubMed  CAS  Google Scholar 

  • Thirkettle-Watts, D., McCabe, T. C., Clifton, R., Moore, C., Finnegan, P. M., Day, D. A., Whelan, J. 2003. Analysis of the alternative oxidase promoters from soybean. Plant Physiol. 133:1158–1169.

    Article  PubMed  CAS  Google Scholar 

  • Tolleter, D., Jaquinod, M., Mangavel, C., Passirani, C., Saulnier, P., Manon, S., Teyssier, E., Payet, N., Avelange-Macherel, M. H., Macherel, D. 2007. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589.

    Article  PubMed  CAS  Google Scholar 

  • Torres, M. A., Dangl, J. L. 2005. Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol. 8:397–403.

    Article  PubMed  CAS  Google Scholar 

  • Valpuesta, V., Botella, M. A. 2004. Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci. 9:573–577.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C., McIntosh, L. 1992. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco. Plant Physiol. 100:115–119.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C., Day, D. A., Wiskich, J. T., Vanlerberghe, A. E., Mcintosh, L. 1995. Alternative oxidase activity in tobacco leaf mitochondria – dependence on tricarboxylic-acid cycle-mediated redox regulation and pyruvate activation. Plant Physiol. 109:353–361.

    PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C., Robson, C. A., Yip, J. Y. H. 2002. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. Plant Physiol. 129:1829–1842.

    Article  PubMed  CAS  Google Scholar 

  • Vanlerberghe, G. C., Cvetkovska, M., Wang, J. 2009. Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? Physiol. Plant. 137:392–406.

    Article  PubMed  CAS  Google Scholar 

  • Vercesi, A. E., Borecky, J., de Godoy Maia, I., Arruda, P., Cuccovia, I. M., Chaimovich, H. 2006. Plant uncoupling mitochondrial proteins. Annu. Rev. Plant Biol. 57:383–404.

    Article  PubMed  CAS  Google Scholar 

  • Winger, A. M., Millar, A. H., Day, D. A. 2005. Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). Biochem. J. 387:865–870.

    Article  PubMed  CAS  Google Scholar 

  • Yabuta, Y., Maruta, T., Nakamura, A., Mieda, T., Yoshimura, K., Ishikawa, T., Shigeoka, S. 2008. Conversion of L-galactono-1,4-lactone to L-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis. Biosci. Biotechnol. Biochem. 72:2598–2607.

    Article  PubMed  CAS  Google Scholar 

  • Zabalza, A., van Dongen, J. T., Froehlich, A., Oliver, S. N., Faix, B., Gupta, K. J., Schmalzlin, E., Igal, M., Orcaray, L., Royuela, M., Geigenberger, P. 2009. Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol. 149:1087–1098.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.G.R. acknowledges financial support from the Swedish Research Council, and I.M.M. from the Faculty of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan G. Rasmusson .

Editor information

Editors and Affiliations

Glossary

Acclimation:

A plant stress response, physiologic, and/or morphologic, that increases the ability of the plant to tolerate stress.

Alternative oxidase:

A peripheral membrane protein that oxidizes ubiquinol to ubiquinone and reduces O2 to H2O, and which constitutes an energy-bypass.

Anoxia:

The special case of hypoxia where O2 is virtually absent.

Ascorbate:

A major cellular antioxidant (vitamin c), synthesized by the electron transport chain in plants.

Compatible solute:

A molecule that is synthesized in response to osmotic stress in so large amounts that the osmotic potential is lowered significantly without harming cellular constituents,

Electrochemical proton gradient:

The combined effect of the difference in electrical charge and in proton concentration across a membrane, determining the energy change for protons transported across the membrane.

Electron transport chain:

A set of redox enzymes linked by associated smaller molecules that allow electrons to pass from reduced substrates (e.g., NADH) to acceptors (e.g., O2).

Energy-bypass:

A protein that forms a parallel path for electron or proton transport, bypassing one or several of the sites for energy coupling between electron transport and ATP synthesis.

Glycine oxidation:

The conversion of two glycines to serine, CO2, and NH +4 . This reaction is the major provider of NADH in the mitochondrial matrix in leaves of C3-plants in the light.

Hypoxia:

The condition where the O2 concentration is below a threshold level imposing a deficiency effect on the plant.

Male sterility:

A defect in production of functional pollen often associated with changes in mitochondria.

NAD(P)H dehydrogenases:

Membrane proteins that oxidize NADH to NAD+, and/or NADPH to NADP+ and reduce ubiquinone to ubiquinol. Plants contain type I (complex I) and type II NAD(P)H dehydrogenases, the latter being energy-bypasses to the former.

NO:

Nitric oxide; a signaling molecule and inhibitor of complex IV.

Oxidative stress:

A condition where reactive oxygen species accumulate to such high levels that they negatively affect cellular function.

Reactive oxygen species:

ROS; oxygen-containing molecules that can damage cellular constituents by chemical reaction with them. Many ROS are radicals.

Reductant:

A molecule (e.g., NADH, NADPH, malate, and reduced ferredoxin) that carries low redox potential electrons, which can be donated to another molecule via a redox reaction.

Retrograde regulation:

The process where the functional status in an organelle is signaled to the nucleus and affects gene expression.

Ubiquinone:

An electron and proton carrier located in the mitochondrial inner membrane, where it mediates electron and proton transport.

Uncoupling protein:

A proton transporter and energy-bypass that allows protons exported by the electron transport chain to flow back into the matrix without passing the ATP synthase.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rasmusson, A.G., Møller, I.M. (2011). Mitochondrial Electron Transport and Plant Stress. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_14

Download citation

Publish with us

Policies and ethics