Somatovisceral Activation During Anger

  • Gerhard Stemmler


What is the physiological signature of anger? If not anger, which emotion would be more destined to turn a “cold” object perception into a Jamesian “hot” emotional encounter? Indeed, reports of bodily anger sensations are descriptions of heat and tension. However, the message from studies reporting physiological anger responses is more difficult to reconcile. The chapter discusses landmark studies on the differentiation between anger and fear. It is emphasized that their methodological characteristics are decisive for demonstrating or failing to show physiological anger specificity. A meta-analysis shows that anger provocation elicits strong changes in systolic and diastolic blood pressure, heart rate, number of skin conductance responses, and muscle activity. The pattern resembles the combined action of adrenaline and noradrenaline, accompanied by strong vagal withdrawal. It is argued that these coordinated changes have a functional value for the pursuit and finally the attainment of the goal of anger: to motivate individuals to avoid failure and pain by averting subordination under physically or socially caused harm and to gain superiority.


Diastolic Blood Pressure Total Peripheral Resistance Skin Conductance Response Skin Conductance Level Emotion Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Averill, J. R. (1974). An analysis of psychophysiological symbolism and its influence on theories of emotion. Journal for the Theory of Social Behaviour, 4, 147–190.CrossRefGoogle Scholar
  2. Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15, 433–442.PubMedGoogle Scholar
  3. Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1(1), 28–58.CrossRefGoogle Scholar
  4. Berntson, G. G., Sarter, M., & Cacioppo, J. T. (2003). Ascending visceral regulation of cortical affective information processing. European Journal of Neuroscience, 18(8), 2103–2109.PubMedCrossRefGoogle Scholar
  5. Buell, J. C., Alpert, B. S., & McCrory, W. W. (1986). Physical stressors as elicitors of cardiovascular reactivity. In K. A. Matthews, S. M. Weiss, T. Detre, T. M. Dembrowski, B. Falkner, S. B. Manuck, & R. B. Williams (Eds.), Handbook of stress, reactivity, and cardiovascular disease (pp. 127–144). New York: Wiley.Google Scholar
  6. Cacioppo, J. T., Berntson, G. G., & Klein, D. J. (1992). What is an emotion? The role of somatovisceral afference, with special emphasis on somatovisceral "illusions". In M. S. Clark (Ed.), Emotion and social behavior. Review of personality and social psychology (pp. 63–98). Newbury Park, CA: Sage.Google Scholar
  7. Cacioppo, J. T., Berntson, G. G., Larsen, J. T., Poehlmann, K. M., & Ito, T. A. (2000). The psychophysiology of emotion. In M. Lewis & J. M. Haviland-Jones (Eds.), Handbook of emotions (2nd ed., pp. 173–191). New York: Guilford Press.Google Scholar
  8. Cannon, W. B. (1927). The James-Lange theory of emotions: A critical examination and an alternative theory. American Journal of Psychology, 39, 106–124.CrossRefGoogle Scholar
  9. Chessick, R. D., Bassan, M., & Shattan, S. (1966). A comparison of the effect of infused catecholamines and certain affect states. American Journal of Psychiatry, 123, 156–165.PubMedGoogle Scholar
  10. Cobos, P., Sanchez, M., Garcia, C., Vera, M. N., & Vila, J. (2002). Revisiting the James versus Cannon debate on emotion: Startle and autonomic modulation in patients with spinal cord injuries. Biological Psychology, 61, 251–269.PubMedCrossRefGoogle Scholar
  11. Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  12. Critchley, H. D., Mathias, C. J., Josephs, O., O‘Doherty, J., Zanini, S., Dewar, B. K., et al. (2003). Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain, 126, 2139–2152.PubMedCrossRefGoogle Scholar
  13. Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A., & Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189–195.PubMedCrossRefGoogle Scholar
  14. Duschek, S., Meinhardt, J., & Schandry, R. (2006). Reduced cortical activity due to chronic low blood pressure: An EEG study. Biological Psychology, 72(3), 241–250.PubMedCrossRefGoogle Scholar
  15. Ellsworth, P. C. (1994). William James and emotion: Is a century of fame worth a century of misunderstanding? Psychological Review, 101(2), 222–229.PubMedCrossRefGoogle Scholar
  16. Elmadjian, F., Hope, J. M., & Freeman, H. (1957). Methacholine test and epinephrine and arterenol excretion. Archives of Neurology and Psychiatry, 77, 399–405.Google Scholar
  17. Erdmann, G., & Baumann, S. (1996). Sind psychophysiologische Veränderungen im Paradigma "Öffentliches Sprechen" Ausdruck emotionaler Belastung? Zeitschrift für Experimentelle Psychologie, 43(2), 224–255.PubMedGoogle Scholar
  18. Fahrenberg, J. (1987). Theory in psychophysiology: The multi-component analysis of psychophysiological reactivity. Journal of Psychophysiology, 1, 9–11.Google Scholar
  19. Fehr, F. S., & Stern, J. A. (1970). Peripheral physiological variables and emotion: The James–Lange theory revisited. Psychological Bulletin, 74, 411–424.PubMedCrossRefGoogle Scholar
  20. Foerster, F. (1985). Psychophysiological response specificities: A replication over a 12-month period. Biological Psychology, 21, 169–182.PubMedCrossRefGoogle Scholar
  21. Foerster, F., Myrtek, M., & Stemmler, G. (1993). Reactivity to multiple stressors: A course in synergism. Journal of Psychophysiology, 7(2), 115–124.Google Scholar
  22. Frankenhaeuser, M. (1979). Psychoneuroendocrine approaches to the study of emotion as related to stress and coping. In R. A. Dienstbier (Ed.), 1978 Nebraska symposium on motivation (pp. 123–161). Lincoln, NB: University of Nebraska Press.Google Scholar
  23. Funkenstein, D. H. (1956). Nor-epinephrine-like and epinephrine-like substances in relation to human behavior. Journal of Nervous and Mental Disease, 124, 58–68.PubMedCrossRefGoogle Scholar
  24. Funkenstein, D. H., King, S. H., & Drolette, M. (1954). The direction of anger during a laboratory stress-inducing situation. Psychosomatic Medicine, 16, 404–413.PubMedGoogle Scholar
  25. Glass, D. C., Krakoff, L. R., Contrada, R., Hilton, W. F., Kehoe, K., Mannucci, E. G., et al. (1980). Effect of harassment and competition upon cardiovascular and plasma catecholamine responses in Type A and Type B individuals. Psychophysiology, 17, 453–463.PubMedCrossRefGoogle Scholar
  26. Hilton, S. M. (1982). The defence-arousal system and its relevance for circulatory and respiratory control. Journal of Experimental Biology, 100, 159–174.PubMedGoogle Scholar
  27. James, W. (1884). What is emotion? Mind, 19, 188–205.CrossRefGoogle Scholar
  28. James, W. (1894). The physical basis of emotion. Psychological Review, 1, 516–529.CrossRefGoogle Scholar
  29. Jänig, W. (2003). The autonomic nervous system and its co-ordination by the brain. In R. J. Davidson, H. H. Goldsmith, & K. R. Scherer (Eds.), Handbook of affective science (pp. 135–186). New York: Oxford University Press.Google Scholar
  30. Jänig, W. (2006). The integrative action of the autonomic nervous system: Neurobiology of homeostasis. New York: Cambridge University Press.CrossRefGoogle Scholar
  31. Janke, B. (2002). Entwicklung des Emotionswissens bei Kindern. Göttingen: Hogrefe.Google Scholar
  32. Knoebel, S. B., McHenry, P. L., Phillips, J. F., & Widlansky, S. (1974). Atropine-induced cardioacceleration and myocardial blood flow in subjects with and without coronary artery disease. American Journal of Cardiology, 33, 327–332.PubMedCrossRefGoogle Scholar
  33. Lacey, J. I., Bateman, D. E., & van Lehn, R. (1953). Autonomic response specificity: An experimental study. Psychosomatic Medicine, 15, 8–21.PubMedGoogle Scholar
  34. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1990). Emotion, attention, and the startle reflex. Psychological Review, 97, 377–395.PubMedCrossRefGoogle Scholar
  35. Levenson, R. W., Ekman, P., & Friesen, W. V. (1990). Voluntary facial action generates emotion-specific autonomic nervous system activity. Psychophysiology, 27, 363–384.PubMedCrossRefGoogle Scholar
  36. Levine, M. A., & Leenen, F. H. (1989). Role of beta 1-receptors and vagal tone in cardiac inotropic and chronotropic responses to a beta 2-agonist in humans. Circulation, 79, 107–115.PubMedGoogle Scholar
  37. Löllgen, H., Meuret, G., Just, H., & Wiemers, K. (1985). Sympathikomimetika in der Notfall- und Intensivmedizin. Deutsches Ärzteblatt, 82, 1951–1955.Google Scholar
  38. Mäntysaari, M. J., Antila, K. J., & Peltonen, T. E. (1988). Circulatory effects of anticipation in a light isometric handgrip test. Psychophysiology, 25, 179–184.PubMedCrossRefGoogle Scholar
  39. Martin, C. E., Shaver, J. A., Leon, D. F., Thompson, M. E., Reddy, P. S., & Leonard, J. J. (1974). Autonomic mechanisms in hemodynamic responses to isometric exercise. Journal of Clinical Investigation, 54, 104–115.PubMedCrossRefGoogle Scholar
  40. Myrtek, M., & Spital, S. (1986). Psychophysiological response patterns to single, double, and triple stressors. Psychophysiology, 23, 663–671.PubMedCrossRefGoogle Scholar
  41. Nelson, G. I., Silke, B., Hussain, M., Verma, S. P., & Taylor, S. H. (1984). Rest and exercise hemodynamic effects of sequential alpha-1-adrenoceptor (trimazosin) and beta-adrenoceptor (propranolol) antagonism in essential hypertension. American Heart Journal, 108, 124–131.PubMedCrossRefGoogle Scholar
  42. Nicotra, A., Critchley, H. D., Mathias, C. J., & Dolan, R. J. (2006). Emotional and autonomic consequences of spinal cord injury explored using functional brain imaging. Brain, 129, 718–728.PubMedCrossRefGoogle Scholar
  43. Ortony, A., & Turner, T. J. (1990). What’s basic about basic emotions? Psychological Review, 97, 315–331.PubMedCrossRefGoogle Scholar
  44. Panksepp, J. (2007). Neurologizing the psychology of affects: How appraisal-based constructivism and basic emotion theory can coexist. Perspectives on Psychological Science, 2(3), 281–296.CrossRefGoogle Scholar
  45. Plutchik, R. (1980). Emotion – A psychoevolutionary synthesis. New York: Harper & Row.Google Scholar
  46. Pollatos, O., Gramann, K., & Schandry, R. (2007). Neural systems connecting interoceptive awareness and feelings. Human Brain Mapping, 28(1), 9–18.PubMedCrossRefGoogle Scholar
  47. Rimé, B., Philippot, P., & Cisamolo, D. (1990). Social schemata of peripheral changes in emotion. Journal of Personality and Social Psychology, 59, 38–49.PubMedCrossRefGoogle Scholar
  48. Ring, C., Edwards, L., & Kavussanu, M. (2008). Effects of isometric exercise on pain are mediated by blood pressure. Biological Psychology, 78(1), 123–128.PubMedCrossRefGoogle Scholar
  49. Schachter, J. (1957). Pain, fear, and anger in hypertensives and normotensives. Psychosomatic Medicine, 19, 17–29.PubMedGoogle Scholar
  50. Schachter, S. (1975). Cognition and peripheralist – centralist controversies in motivation and emotion. In M. S. Gazzaniga & C. Blakemore (Eds.), Handbook of psychobiology (pp. 529–564). New York: Academic Press.Google Scholar
  51. Schachter, S., & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399.PubMedCrossRefGoogle Scholar
  52. Scherer, K. R., & Wallbott, H. G. (1994). Evidence for universality and cultural variation of differential emotion response patterning. Journal of Personality and Social Psychology, 66, 310–328.PubMedCrossRefGoogle Scholar
  53. Shanks, R. G. (1984). The physiological role of alpha- and beta-adrenoceptors in the regional circulation. In W. Kobinger & R. P. Ahlquist (Eds.), Alpha and beta adrenoceptors and the cardiovascular system (pp. 109–123). Princeton, NJ: Excerpta Medica.Google Scholar
  54. Silke, B., Nelson, G. I., Ahuja, R. C., Okoli, R. C., & Taylor, S. H. (1983). Comparative haemodynamic dose-response effects of intravenous propranolol and pindolol in patients with coronary heart disease. European Journal of Clinical Pharmacology, 25, 157–165.PubMedCrossRefGoogle Scholar
  55. Sinha, R., Lovallo, W. R., & Parsons, O. A. (1992). Cardiovascular differentiation of emotions. Psychosomatic Medicine, 54, 422–435.PubMedGoogle Scholar
  56. Smith, O. A., DeVito, J. L., & Astley, C. A. (1990). Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus-perifornical region. American Journal of Physiology, 259, R943–R954.PubMedGoogle Scholar
  57. Stemmler, G. (1984). Psychophysiologische Emotionsmuster. Frankfurt: Lang.Google Scholar
  58. Stemmler, G. (1989). The autonomic differentiation of emotions revisited: Convergent and discriminant validation. Psychophysiology, 26, 617–632.PubMedCrossRefGoogle Scholar
  59. Stemmler, G. (1992a). Differential psychophysiology: Persons in situations. New York: Springer.Google Scholar
  60. Stemmler, G. (1992b). The vagueness of specificity: Models of peripheral physiological emotion specificity in emotion theories and their experimental discriminability. Journal of Psychophysiology, 6(1), 17–28.Google Scholar
  61. Stemmler, G. (2003). Methodological considerations in the psychophysiological study of emotion. In R. J. Davidson, H. H. Goldsmith, & K. R. Scherer (Eds.), Handbook of affective science (pp. 225–255). New York: Oxford University Press.Google Scholar
  62. Stemmler, G. (2004). Physiological processes during emotion. In P. Philippot & R. S. Feldman (Eds.), The regulation of emotion (pp. 33–70). Mahwah, NJ: Erlbaum.Google Scholar
  63. Stemmler, G., & Fahrenberg, J. (1989). Psychophysiological assessment: Conceptual, psychometric, and statistical issues. In G. Turpin (Ed.), Handbook of clinical psychophysiology (pp. 71–104). Chichester: Wiley.Google Scholar
  64. Stemmler, G., Heldmann, M., Pauls, C. A., & Scherer, T. (2001). Constraints for emotion specificity in fear and anger: The context counts. Psychophysiology, 38(2), 275–291.PubMedCrossRefGoogle Scholar
  65. Thayer, J. F., & Brosschot, J. F. (2005). Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology, 30(10), 1050–1058.PubMedCrossRefGoogle Scholar
  66. Wagner, H. (1989). The peripheral physiological differentiation of emotions. In H. Wagner & A. Manstead (Eds.), Handbook of social psychophysiology (pp. 77–98). Chichester: Wiley.Google Scholar
  67. Wenger, M. A., Clemens, T. L., Darsie, M. L., Engel, B. T., Estess, F. M., & Sonnenschein, R. R. (1960). Autonomic response patterns during intravenous infusion of epinephrine and nor-epinephrine. Psychosomatic Medicine, 22, 294–307.PubMedGoogle Scholar
  68. Wiens, S. (2005). Interoception in emotional experience. Current Opinion in Neurology, 18, 442–447.PubMedCrossRefGoogle Scholar
  69. Ziegler, M. G., Lake, C. R., & Kopin, I. J. (1977). The sympathetic-nervous-system defect in primary orthostatic hypotension. New England Journal of Medicine, 296, 293–297.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of PsychologyPhilipps-UniversitätMarburgGermany

Personalised recommendations