Constructing a Neurology of Anger

  • Michael Potegal
  • Gerhard Stemmler


In keeping with general neurological principles, earlier stage processing of verbal and visual triggers for anger must involve posterior and middle temporal cortices. As this processing typically evolves, it evokes memory of related events (e.g., past insults) and other relevant information from more anterior temporal areas. This mutual interaction shapes perceptions of anger-provoking challenges which activate cortical/subcortical circuits that prime and mediate angry/aggressive actions, e.g., cingulate motor areas 23 and 24 and medial/basal amygdala. The initial appraisals of anger in mid- and anterior temporal lobe are also transmitted anteriorly to ventromedial and orbitofrontal cortex. The latter integrates anger-provoking perceptions, e.g., combining the insulting verbal comment with the visual sneer, and weighs inhibitory factors like received or anticipated punishment, empathy with the offender and his relative social status. The combined result determines angry aggressive responses, if any, by disinhibiting the subcortical circuits activated by the temporal lobe. Interactions between ventromedial and orbitofrontal areas and/or feedback to the temporal lobe govern the escalation of aggression.


Temporal Lobe Frontal Lobe Temporal Lobe Epilepsy Trait Anger Anterior Cingulate Gyrus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Collection of the EEG data was supported by a grant to M. Potegal from the Harry Frank Guggenheim Foundation and by National Research Service Awards to M. Potegal from the National Institute for Neurological Disorders and Stroke (F33 NS09638) and the National Institute of Child Health and Human Development (F33 HD08208). At that time, the first author was a Fellow in the laboratory of Richard J. Davidson, where work was supported in part by an NIMH Center for Behavioral Sciences Research Grant (P50-MH52354) to the Wisconsin Center for Affective Neuroscience (R.J. Davidson, Director) and by an NIMH Research Scientist Award (KO5-MH00875).


  1. Ackerly, S. S. (1964). A case of paranatal bilateral frontal lobe defect observed for thirty years. In J. M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 192–218). New York: McGraw-Hill.Google Scholar
  2. Adams, D. B. (2006). Brain mechanisms of aggressive behavior: An updated review. Neuroscience and biobehavioral reviews, 30, 304–318.PubMedGoogle Scholar
  3. Adamec, R. E. (1990). Does Kindling model anything clinically relevant. Biological Psychiatry, 27, 249–279.Google Scholar
  4. Adelmann, P. K., & Zajonc, R. B. (1989). Facial efference and the experience of emotion. Annual Review of Psychology, 40, 249–280.PubMedGoogle Scholar
  5. Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12, 169–177.PubMedGoogle Scholar
  6. Anderson, S. W., Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neuroscience, 2, 1032–1037.PubMedGoogle Scholar
  7. John Archer, J., Birring, S. S., & Wu, F. C. W. (1998). The association between testosterone and aggression among young men: Empirical findings and a meta-analysis. Aggressive Behavior, 24, 411–420.Google Scholar
  8. Archibald, S. J., Mateer, C. A., & Kerns, K. A. (2001). Utilization behavior: Clinical manifestations and neurological mechanisms. Neuropsychology Review, 11, 117–130.PubMedGoogle Scholar
  9. Aristotle, XXII (1939). The "art" of rhetoric (J. H. Freese, Trans.). Cambridge: Harvard University Press.Google Scholar
  10. Bartolomeil, F., Guye, M., Wendling, F., Gavaret, M., Regis, J., & Chauvel, P. (2002). Fear, anger and compulsive behavior during seizure: Involvement of large scale fronto-temporal neural networks. Epileptic Disorders, 4, 235–241.PubMedGoogle Scholar
  11. Bejjani, B. P., Houeto, J. L., Hariz, M., Yelnik, J., Mesnage, V., Bonnet, A. M., et al. (2002). Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology, 59, 1425–1427.PubMedGoogle Scholar
  12. Berlin, H. A., Rolls, E. T., & Kischka, U. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain, 127, 1108–1126.PubMedGoogle Scholar
  13. Blair, J. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55, 198–208.PubMedGoogle Scholar
  14. Blake, P. Y., Pincus, J. H., & Buckner, C. (1995). Neurologic abnormalities in murderers. Neurology, 45, 1641–1647.PubMedGoogle Scholar
  15. Blanchard, D. C., & Blanchard, R. J. (1988). Ethoexperimental approaches to the biology of emotion. Annual Review of Psychology, 39, 43–68.PubMedGoogle Scholar
  16. Blanchard, D. C., & Blanchard, R. J. (2003). What can animal aggression research tell us about human aggression?. Hormones and Behavior, 44, 171–177.PubMedGoogle Scholar
  17. Blanchard, D. C., Hynd, A. L., Minke, K. A., & Blanchard, R. J. (2001). Human defensive behaviors to threat scenarios show parallels to fear- and anxiety-related defense patterns of nonhuman mammals. Neuroscience and biobehavioral reviews, 25, 761–770.PubMedGoogle Scholar
  18. Blumer, D. (2000). Dysphoric disorders and paroxysmal affects: Recognition and treatment of epilepsy-related psychiatric disorders. Harvard Review of Psychiatry, 8, 8–17.PubMedGoogle Scholar
  19. Bond, A. B. (1989). Toward a resolution of the paradox of aggressive displays. II: Behavioral efference and the communication of intentions. Ethology, 81, pp. 235–249.Google Scholar
  20. Brandt, J., Seidman, L. J., & Kohl, D. (1985). Personality characteristics of epileptic patients: A controlled study of generalized and temporal lobe cases. Journal of Clinical and Experimental Neuropsychology, 7, 25–38.PubMedGoogle Scholar
  21. Brookmeyer, R., Gray, S., & Kawas, C. (1998). Projections of Alzheimer’s disease in the united states and the public health impact of delaying disease onset. American Journal of Public Health, 88, 1337–1342.PubMedGoogle Scholar
  22. Bufkin, J. L., & Luttrell, V. E. (2005). Neuroimaging studies of aggressive and violent behavior. Trauma, Violence and Abuse, 6, 176–191.Google Scholar
  23. Bushman, B. J., & Anderson, C. A. (2001). Is it time to pull the plug on the hostile versus instrumental aggression dichotomy?. Psychological Review, 108, 273–279.PubMedGoogle Scholar
  24. Cox, D. E., & Harrison, D. W. (2008). Models of anger: Contributions from psychophysiology, neuropsychology and the cognitive behavioral perspective. Brain Structure and Function, 212, 371–385.PubMedGoogle Scholar
  25. Damasio, A. R., Grabowski, T. J., Bechara, A., Damasio, H., Ponto, L. L. B., Parvizi, J., et al. (2000). Subcortical and cortical brain activity during the feeling of self-generated emotions. Nature Neuroscience, 3, 1049–1056.PubMedGoogle Scholar
  26. Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39, 71–89.PubMedGoogle Scholar
  27. Davidson, R. J., Shackman, A. J., Jeffrey, S., & Maxwell, J. S. (2004). Asymmetries in face and brain related to emotion. Trends in Cognitive Sciences, 8, 389–391.PubMedGoogle Scholar
  28. Doughtery, D., Shin, L., Alpert, N., Pitman, R., Orr, S., Lasko, M., et al. (1999). Anger in healthy men: A PET study using script-driven imagery. Biological Psychiatry, 46, 466–472.Google Scholar
  29. Dougherty, D., Rauch, S. L., Deckersbach, T., Marci, C., Loh, R., Shin, L. M., et al. (2004). Ventromedial prefrontal cortex and amygdala dysfunction during an anger induction positron emission tomography study in patients with major depressive disorder with anger attacks. Archives of General Psychiatry, 61, 795–804.PubMedGoogle Scholar
  30. Drexler, K., Schweitzer, J. B., Quinn, C. K., Gross, R., Ely, T. D., Muhammad, F., et al. (2000). Neural activity related to anger in cocaine-dependent men: A possible link to violence and relapse. American Journal of Addictions, 9, 331–339.Google Scholar
  31. Drummond, P. D., & Lance, J. W. (1987). Facial flushing and sweating mediated by the sympathetic nervous system. Brain, 110, 793–803.PubMedGoogle Scholar
  32. Einon, D. F., & Potegal, M. (1994). Temper tantrums in young children. In M. Potegal & J. Knutson (Eds.), Dynamics of aggression: Biological and social processes in dyads and groups (pp. 157–194). Hillsdale, NJ: Erlbaum Assoc.Google Scholar
  33. Elliott, F. A. (1982). Neurological findings in adult minimal brain dysfunction and the dyscontrol syndrome. Journal of Nervous and Mental Disease, 170, 680–687.PubMedGoogle Scholar
  34. Elliot, R., Dolan, R. J., & Firth, C. D. (2000). Dissociable functions in the medial and lateral orbito frontal cortex: Evidence from human neuro imaging studies. Cerebral cortex, 10, 308–317.Google Scholar
  35. Eluvathingal, T. J., Chugani, H. T., Behen, M. E., et al. (2006). Abnormal brain connectivity in children after early severe socioemotional deprivation: A diffusion tensor imaging study. Pediatrics, 117, 2093–2100.PubMedGoogle Scholar
  36. Esslen, M., Pascual-Marqui, R. D., Hell, D., Kochi, K., & Lehmann, D. (2004). Brain areas and time course of emotional processing. NeuroImage, 21, 1189–1203.PubMedGoogle Scholar
  37. Fenwick, P. (1989). The nature and management of aggression in epilepsy. Journal of Neuropsychiatry & Clinical Neurosciences, 1, 418–425.Google Scholar
  38. Fornazzari, L., Farcnik, K., Smith, I., Heasman, G. A., & Ichise, M. (1992). Violent visual hallucinations and aggression in frontal lobe dysfunction: Clinical manifestations of deep orbitofrontal foci. Journal of Neuropsychiatry and Clinical Neurosciences, 4, 42–44.PubMedGoogle Scholar
  39. Foster, P. S., & Harrison, D. W. (2002). The relationship between magnitude of cerebral activation and intensity of emotional arousal. International Journal of Neuroscience, 112, 1463–1477.PubMedGoogle Scholar
  40. Franzini, A., Carlo Marras, C., Ferroli, P., Bugiani, O., & Broggi, G. (2005). Stimulation of the posterior hypothalamus for medically intractable impulsive and violent behavior. Stereotactic and Functional Neurosurgery, 83, 63–66.PubMedGoogle Scholar
  41. Fratelli, C. M., Liow, K., Korenman, L. M., et al. (2001). Cognitive deficits in children with hypothalamic hamartoma. Neurology, 57, 43–46, N=6/8 with screaming hit & kick.Google Scholar
  42. Fukui, H., Murai, T., Shinozaki, J., Aso, T., Fukuyama, H., Hayashi, T., et al. (2006). The neural basis of social tactics: An fMRI study. NeuroImage, 32, 913–920.PubMedGoogle Scholar
  43. George, D. T., Rawlings, R. R., Williams, W. A., Phillips, M. J. ,, Fong, G., Kerich, M., et al. (2004). A select group of perpetrators of domestic violence: Evidence of decreased metabolism in the right hypothalamus and reduced relationships between cortical/subcortical brain structures in position emission tomography. Psychiatry Research: Neuroimaging, 130, 11–25.PubMedGoogle Scholar
  44. Glosser, G., Zwil, A. S., Glosser, D. S., O‘Connor, M. J., & Sperling, M. R. (2000). Psychiatric aspects of temporal lobe epilepsy before and after anterior temporal lobectomy. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 53–58.PubMedGoogle Scholar
  45. Golden, C. J., Michele, L., Jackson, M. L., Peterson-Rohne, A., & Gontkovsky, S. T. (1996). Neuropsychological correlates of violence and aggression: A review of the clinical literature. Aggression and Violent Behavior, 1, 3–25.Google Scholar
  46. Goldsmith, H. H. (1996). Studying temperament via construction of the Toddler Behavior Assessment Questionnaire. Child Development, 67, 218–235.PubMedGoogle Scholar
  47. Goldsmith, H. H., Reilly, H. H., Lemery, K. S., Longley, S., & Prescott, A. (1994). Manual for the preschool laboratory temperament assessment battery (Lab-TAB). Madison, WI: University of Wisconsin, Unpublished manuscript.Google Scholar
  48. Goldstein, R. Z., Alia-Klein, N., Leskovjan, A. C., Fowler, J. S., Wang, G. J., Gur, R. C., et al. (2005). Anger and depression in cocaine addiction: Association with the orbitofrontal cortex. Psychiatry Research: Neuroimaging, 138(1), 13–22.PubMedGoogle Scholar
  49. Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence and aggression: A report of the Vietnam Head Injury Study. Neurology, 46, 1231–1238.Google Scholar
  50. Grafman, J., Vance, S. C., Weingartner, H., et al. (1986). The effects of lateralized frontal lesions on mood regulation. Brain, 109, 1127–1148.PubMedGoogle Scholar
  51. Greve, K. W., Sherwin, E., Stanford, M. W., Mathias, C., Love, J., & Ramzinski, P. (2001). Personality and neurocognitive correlates of impulsive aggression in long-term survivors of severe traumatic brain injury. Brain Injury, 15, 255–262.PubMedGoogle Scholar
  52. Harmon-Jones, E., Sigelman, J. D., Bohlig, A., & Harmon-Jones, C. (2003). Anger, coping, and frontal cortical activity: The effect of coping potential on anger-induced left frontal activity. Cognition and Emotion, 17, 1–24.Google Scholar
  53. Hermans, E. J., Ramsey, N. F., & van Honk, J. (2008). Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biological Psychiatry, 63, 263–270.PubMedGoogle Scholar
  54. Hirono, N., Mega, M., & Dinov, I (2000). Left fronto termporal hypoperfusion is associated with aggression in patients with dementia. Archives of Neurology, 57, 861–866.Google Scholar
  55. Hornak, J., Bramham, J., Rolls, E. T., Morris, R. G., O‘Doherty, J., Bullock, P. R., et al. (2003). Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain, 126, 1691–1712.PubMedGoogle Scholar
  56. Hubble, G. (1997). Feminism and the battered woman: The limits of self-defense in the context of domestic violence. Current Issues in Criminal Justice, 9, 113–124.Google Scholar
  57. Hurliman, E., Nagode, J. C., & Pardo, J. V. (2005). Double dissociation of exteroceptive and interoceptive feedback systems in the orbital and ventromedial prefrontal cortex of humans. The Journal of neuroscience, 25, 4641–4648.PubMedGoogle Scholar
  58. Hutchinson, R. R., Pierce, G. E., Emley, G. S., Proni, T. J., & Sauer, R. A. (1977). The laboratory measurement of human anger. Biobehavioral Reviews, 1, 241–259.Google Scholar
  59. Juhász, C., Behen, M. E., Muzik, O., Chugani, D. C., & Chugani, H. T. (2001). Bilateral medial prefrontal and temporal neocortical hypometabolism in children with epilepsy and aggression. Epilepsia., 42, 991–1001.PubMedGoogle Scholar
  60. Kanner, A. M. (2003). Depression in epilepsy: Prevalence, clinical semiology, pathogenic mechanisms, and treatment. Biological Psychiatry, 54, 388–398.PubMedGoogle Scholar
  61. Kim, J. S. (2002). Agitation, aggression, and disinhibition syndromes after traumatic brain injury. NeuroRehabilitation, 17, 297–310.PubMedGoogle Scholar
  62. Kim, J. S., Choi, S., Kwon, S. U., & Seo, Y. S. (2002). Inability to control anger or aggression after stroke. American Academy of Neurology, 58, 1106–1108.Google Scholar
  63. Krämer, U. M., Jansma, H., Tempelmann, C., & Münte, T. F. (2007). Tit-for-tat: The neural basis of reactive aggression. NeuroImage, 38, 203–211.PubMedGoogle Scholar
  64. Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.PubMedGoogle Scholar
  65. Kuppens, P., Van Mechelen, I., & Meulders, M. (2004). Every cloud has a silver lining: Interpersonal and individual difference determinants of anger-related behaviors. Personality and Social Psychology Bulletin, 30, 1550–1564.Google Scholar
  66. Kruk, M. R. (1991). Ethology and pharmacology of hypothalamic aggression in the rat. Neuroscience and biobehavioral reviews, 15, 527–538.PubMedGoogle Scholar
  67. Lanctôt, K. L., Herrmann, N., Nadkarni, N. K., Leibovitch, F. S., Caldwell, C. B., & Black, S. E. (2004). Medial temporal hypoperfusion and aggression in Alzheimer disease. Archives of Neurology, 61, 1731–1737.PubMedGoogle Scholar
  68. Lee, G. P., Bechara, A., Adolphs, R., Arena, J., Meador, K. J., Loring, D. W., & Smith, J. R. (1998). Clinical and physiological effects of bilateral amygdalotomy for introctable aggression. Journal of Neuropsychiatry and Clinical Neurosciences, 10, 413–420.Google Scholar
  69. Lee, T. W., Josephs, O., Dolan, R. J., & Critchley, H. D. (2006). Imitating expressions: Emotion-specific neural substrates in facial mimicry. Social Cognitive and Affective Neuroscience, 1(2), 122–135.PubMedGoogle Scholar
  70. Li, T.-Q., Mathews, V. P, Yang, W., Dunn, D., Kronenberger, W. (2005). Adolescents with disruptive behavior disorder investigated using an optimized MR diffusion tensor imaging protocol. Annals of the New York Academy of Sciences, 1064, 184–192.PubMedGoogle Scholar
  71. Lieb, J. P., Dashieff, R. M., & Engel, J. (1991). Role of the frontal lobes in the propagation of mesial temporal seizures. Epilepsia., 32, 822–837.PubMedGoogle Scholar
  72. Lotze, M., Veit, R., Anders, S., & Birbaumera, N. (2007). Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: An interactive fMRI study. NeuroImage, 34, 470–478.PubMedGoogle Scholar
  73. Lyketsos, C. G., Lopez, O., Jones, B., et al. (2002). Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment. JAMA, 288, 1475–1483.PubMedGoogle Scholar
  74. Manford, M., Fish, D. R., & Shorvon, S. D. (1996). An analysis of clinical seizure patterns and their localizing value in frontal and temporal epilepsies. Brain, 119, 17–40.PubMedGoogle Scholar
  75. Marci, C. D., Glick, D. M., Loh, R., & Dougherty, D. D. (2007). Autonomic and prefrontal cortex responses to autobiographical recall of emotions. Cognitive, Affective, and Behavioral Neuroscience, 7(3), 243–250.Google Scholar
  76. Matsuura, M., Oana, Y., Kato, M., Kawana, A., Kan, R., Kubota, H., et al. (2003). A multicenter study on the prevalence of psychiatric disorders among new referrals for epilepsy in Japan. Epilepsia., 44, 107–l14.PubMedGoogle Scholar
  77. Mazars, G. (1970). Criteria for identifying cingulate epilepsies. Epilepsia., 11, 41–47.PubMedGoogle Scholar
  78. McCorkle, R. (1993). Living on the edge: Fear in a maximum-security prison. Journal of Offender Rehabilitation, 20 (1/2), 73–79.Google Scholar
  79. McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience & Biobehavioral Reviews, 28, 285–305.Google Scholar
  80. Merk, W., Bram Orobio de Castro, B., Koops, W., & Matthys, W. (2005). The distinction between reactive and proactive aggression: Utility for theory, diagnosis and treatment?. European Journal of Developmental Psychology, 2, 197–220.Google Scholar
  81. Mick, E., Spencer, T., Wozniak, J., & Biederman, J. (2005). Heterogeneity of irritability in attention-deficit/hyperactivity disorder subjects with and without mood disorders. Biological Psychiatry, 58, 576–582.PubMedGoogle Scholar
  82. Miyashita, Y. (2004). Cognitive memory: Cellular and network machineries and their top-down control. Science, 306, 435–440.PubMedGoogle Scholar
  83. Morecraft, R. J., & Van Hoesen, G. W. (1998). Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain research bulletin, 45, 209–232.PubMedGoogle Scholar
  84. Mpakopoulou, M., Gatos, M. H., Brotis, A., Paterakis, K. N., & Fountas, K. N. (2008). Stereotactic amygdalotomy in the management of severe aggressive behavioral disorders. Neurosurgical Focus, 25, E6, 1–6.Google Scholar
  85. Muntner, P., Garrett, E., Klag, M. J., & Coresh, J. (2002). Stroke prevalence between 1973 and 1991 in the US population 25 to 74 years of age. Stroke, 33, 1209–1213.PubMedGoogle Scholar
  86. Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: A meta-analysis. Cognitive, Affective, and Behavioral Neuroscience, 3, 207–233.Google Scholar
  87. Niedenthal, P. M., Barsalou, L. W., Winkielman, P., Krauth-Gruber, S., & Ric, F. (2005). Embodiment in attitudes, social perception, and emotion. Personality and Social Psychology Review, 9, 184–211.PubMedGoogle Scholar
  88. Öngür, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10, 206–219.PubMedGoogle Scholar
  89. Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions (pp. 187–205). Oxford: Oxford University Press,  Chapter 10 Nature red in and claw: The Neurobiological Sources of Rage and Anger.Google Scholar
  90. Pietrini, P., Guazzelli, M., Basso, G., Jaffe, K., & Grafman, J. (2000). Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. The American journal of psychiatry, 157, 1772–1781.PubMedGoogle Scholar
  91. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331–348.PubMedGoogle Scholar
  92. Potegal, M. (1979). The reinforcing value of several types of aggressive behavior: A review. Aggressive Behavior, 5, 353–373.Google Scholar
  93. Potegal, M. (1994). Aggressive arousal: The amygdala connection. In Potegal, M. & Knutson, J. (Ed.), The dynamics of aggression: Biological and social processes in dyads and groups (pp. 73–112). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  94. Potegal, M. (2000). Some characteristics, correlates, and consequences of visible autonomic activity in the temper tantrums of young children. In R. G. Barr, B. Hopkins, & J. A. Green (Ed.), Crying as a sign, a symptom and a signal (pp. 121–136). London: Mac Keith Press.Google Scholar
  95. Potegal, M., Goldsmith, H., Chapman, R., Senulis, J., & Davidson, R. (1998, July) Tantrums, temperament and temporal lobes. Poster presented at the biennial meeting of the International Society for Research on Aggression Ramapo NJ.Google Scholar
  96. Potegal, M., Kosorok, M. R., & Davidson, R. J. (1996). The time course of angry behavior in the temper tantrums of young children. Annals of the New York Academy of Sciences, 794, 31–45.PubMedGoogle Scholar
  97. Potegal, M., & Davidson, R. J. (2003). Temper tantrums in young children: 1) behavioral composition. Journal of Developmental and Behavioral Pediatrics, 24, 140–147.PubMedGoogle Scholar
  98. Potegal, M., Kosorok, M. R., & Davidson, R. (2003). Temper tantrums in young children: 2) tantrum duration and temporal organization. Journal of Developmental and Behavioral Pediatrics, 24, 148–154.PubMedGoogle Scholar
  99. Reid, J. P. (2006). St Thomas Aquinas Summa Theologiae: 1a2ae. 40–48 Vol. 21 Fear and Anger. Cambridge: Cambridge University Press.Google Scholar
  100. Rheims, S., Ryvlin, P., Scherer, C., Minotti, L., Hoffmann, D., Guenot, M., et al. (2008). Analysis of clinical patterns and underlying epileptogenic zones of hypermotor seizures. Epilepsia, 49, 1–11.Google Scholar
  101. Roseman, I. J., Wiest, C., & Swartz, T. S. (1994). Phenomenology, behaviors and goals differentiate discrete emotions. Journal of Personality and Social Psychology, 67, 206–221.Google Scholar
  102. Saint-Hilaire, J.-M., & Lee, M. A. (2000). Localizing and lateralizing value of epileptic symptoms in temporal lobe epilepsy. Canadian Journal of Neurological Sciences, 27(Suppl. 1), S1–S5.PubMedGoogle Scholar
  103. Sano, K., & Mayanagi, Y. (1988). Posteromedial hypothalamotomy in treatment of violent aggressive behaviour. Acta Neurochirurgica Supplement, 44, 145–151.Google Scholar
  104. Schlaug, G., Antke, C., Holthausen, H., Arnold, S., Ebner, A., Tuxhor, I., et al. (1997). Ictal motor signs and interictal regional cerebral hypometabolism. Neurology, 49, 341–350.PubMedGoogle Scholar
  105. Shamay-Tsoory, S. G., Tomer, R., Berger, B. D., & Aharon-Peretz, J. (2003). Characterization of empathy deficits following prefrontal brain damage: The role of the right ventromedial prefrontal cortex. Journal of Cognitive Neuroscience, 15, 324–337.PubMedGoogle Scholar
  106. Siegel, A. (2004). The neurobiology of aggression and rage . Boca Raton, FL: CRC Press.Google Scholar
  107. Siegel, A., Roeling, T. A. P., Gregga, T. R., & Kruk, M. R. (1999). Neuropharmacology of brain-stimulation-evoked aggression. Neuroscience and biobehavioral reviews, 23, 359–389.PubMedGoogle Scholar
  108. Silver, I. M., & Yudofsky, S. C. (1987). Aggressive behavior in patients with neuropsychiatric disorders. Psychiatric Annals, 17, 367–370.Google Scholar
  109. Spencer, S. (1988). Corpus callosum section and other disconnection procedures for medically intractable epilepsy. Epilepsia., 29(Suppl 2), S85–S99.PubMedGoogle Scholar
  110. Sprengelmeyer, R., Rausch, M., Eysel, U. T., & Przuntek, H. (1998). Neural structures associated with recognition of facial expressions of basic emotions. Proceedings: Biological Sciences, 265, 1927–1931.Google Scholar
  111. Stefanacci, L., & Amaral, D. (2002). Some observations on cortical inputs to the macaque monkey amygdala: An anterograde tracing study. Journal of Comparative Neurology, 451, 301–323.PubMedGoogle Scholar
  112. Steketee, J. D. (2003). Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Research Reviews, 41, 203–228.Google Scholar
  113. Stemmler, G. (1992). The vagueness of specificity: Models of peripheral physiological emotion specificity in emotion theories and their experimental discriminability. Journal of Psychophysiology, 6(1), 17–28.Google Scholar
  114. Stemmler, G. (1997). Selective activation of traits: Boundary conditions for the activation of anger. Personality and Individual Differences, 22, 213–233.Google Scholar
  115. Stemmler, G., Heldmann, M., Cornelia, A. P., & Scherer, T. (2001). Constraints for emotion specificity in fear and anger: The context counts. Psychophysiology, 38, 275–291.PubMedGoogle Scholar
  116. Tarkka, I. M., Karhu, J., Kuikka, J., Pääkkönen, A., Bergström, K., Partanen, J., et al. (2001). Altered frontal lobe function suggested by source analysis of event-related potentials in impulsive violent alcoholics. Alcohol and Alcoholism, 36, 323–328.PubMedGoogle Scholar
  117. Tassinari, C. A., Tassi, L., Calandra-Buonaura, G., Stanzani-Maserati, M., Fini, N., Pizza, F., et al. (2005). Biting behavior, aggression, and seizures. Epilepsia., 46, 654–663.PubMedGoogle Scholar
  118. Tateno, A., Jorge, R. E., Robert, G., & Robinson, R. G. (2003). Clinical correlates of aggressive behavior after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 15, 155–160.PubMedGoogle Scholar
  119. Tebertz van Elst, L., Woermann, F. G., Lemieux, L., Thompson, P. J., & Trimble, M. R. (2000). Affective aggression in patients with temporal lobe epilepsy: A quantitative MRI study of the amygdala. Brain, 123, 234–243.Google Scholar
  120. Thurman, D. J., Alverson, C., Dunn, K. A., Guerrero, J., & Sniezek, J. E. (1999). Traumatic brain injury in the United States: A public health perspective. Journal of Head Trauma Rehabilitation, 14, 602–615.PubMedGoogle Scholar
  121. Tiihonen, J., Kuikka, J. T., Bergström, K. A., et al. (1997). Single-photon emission tomography imaging of monoamine transporters in impulsive violent behaviour. European Journal of Nuclear Medicine, 24, 1253–1260.PubMedGoogle Scholar
  122. Tonkonogy, J. M. (1991). Violence and temporal lobe lesion: Head CT and MRI data. The Journal of Neuropsychiatry and Clinical Neurosciences, 3, 189–196.PubMedGoogle Scholar
  123. Tonkonogy, J. M., & Geller, J. L. (1992). Hypothalamic lesions and intermittent explosive disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 4, 45–50.PubMedGoogle Scholar
  124. Trimble, M. R., & Tebertz van Elst, L. (1999). On some clinical implications of the ventral striatum and the extended amygdala: Investigations of aggression. Annals of the New York Academy of Sciences, 877, 638–644.PubMedGoogle Scholar
  125. Volkow, N. D., Tancredib, L. R., Grant, C., Gillespie, H., Valentine, A., Mullani, N., et al. (1995). Brain glucose metabolism in violent psychiatric patients: A preliminary study. Psychiatry Research: Neuroimaging, 61, 243–253.PubMedGoogle Scholar
  126. Wang, L., Mathews, G. C., Whetsell, W. O., & Abou-Khalil, B. (2008). Hypermotor seizures in patients with temporal pole lesions. Epilepsy Research, 07, 005.Google Scholar
  127. Weinshenker, N. J., & Siegel, A. (2002). Bimodal classification of aggression: Affective defense and predatory attack. Aggression and Violent Behavior, 7, 237–250.Google Scholar
  128. Wieser, H. G., Meles, H. P., Bernoulli, C., & Seigfried, J. (1980). Clinical and chronotopographic psychomotor seizure patterns. Acta Neurochirurgica Supplement, 30, 103–112.Google Scholar
  129. Weissenberger, A., Dell, M., Liow, K., et al. (2001). Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 40(6), 696–703, N=12 83% ODD, 89% aggr.PubMedGoogle Scholar
  130. Whitman, S., King, L., & Cohen, R. (1986). Epilepsy and violence: A scientific and social analysis psychopathology in epilepsy: Social dimensions. New York: Oxford University Press.Google Scholar
  131. Woermann, F. G., van Elst, L. T., Koepp, M. J., Free, S. L., Thompson, P. J., Trimble, M. R., et al. (2000). Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: An objective voxel by voxel analysis of automatically segmented MRI. Journal of Neurology, Neurosurgery, and Psychiatry, 68, 162–169.PubMedGoogle Scholar
  132. Yamanouchi, H., Noda, Y., Sugai, K., Takashima, S., & Kurokawa, T. (1991). Two cases of ictal automatisms of frontal lobe origin. No to Hattatsu (Brain and Development), 23, 492–496.Google Scholar
  133. Yankovsky, A. E., Veilleux, M., Dubeau, F., & Andermann., F. (2005). Post-ictal rage and aggression: A video-EEG study. Epileptic Disorders, 7, 143–147.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.Faculty of PsychologyPhilipps-UniversitätWarburgGermany

Personalised recommendations