Skip to main content

Applications in Anatomic Pathology

  • Chapter
  • First Online:
Basic Concepts of Molecular Pathology

Part of the book series: Molecular Pathology Library ((MPLB,volume 2))

Abstract

Molecular testing in anatomic pathology is becoming increa-singly important, and molecular assays are used both diagnostically and prognostically, particularly in the workup of neoplasia and for identification or subclassification for certain infectious processes. Fresh and frozen tissues are the optimal source of DNA and RNA to serve as the template for targeted molecular analysis; however, archival formalin-fixed, paraffin-embedded tissue is a frequently used alternative source of DNA for clinical testing. Paraffin-embedded tissue is especially critical as a source of nucleic acid when pathological evaluation renders an unexpected diagnosis, and it also provides the advantage of allowing for archival analysis with correlation to outcome.

Molecular analysis can be performed at different levels of resolution, from the whole chromosome down to the specific nucleotide sequence. At the chromosomal level, classical cytogenetics discerns chromosome structure and number and can detect many major translocations and deletions. This technique requires fresh cells that are capable of entering into cell division. The cells are arrested in metaphase so that the chromosomes can be visualized individually for analysis. A newer technique that can be combined with classical cytogenetics is spectral karyotyping (SKY). For this specialized analysis, the metaphase chromosomes are subjected to fluorescent in situ hybridization with specific probes that are labeled with combinations of five different fluorescent tags. The result involves the “painting” of each chromosome with a unique fluorescent signal that can be differentiated with the assistance of computer detection system. This technique allows for resolution of complex karyotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hunt JL, Finkelstein SD. Microdissection techniques for molecular testing in surgical pathology. Arch Pathol Lab Med. 2004;128:1372–1378.

    PubMed  Google Scholar 

  2. Eltoum IA, Siegal GP, Frost AR. Microdissection of histologic sections: past, present, and future. Adv Anat Pathol. 2002;9:316–322.

    Article  PubMed  Google Scholar 

  3. Simone NL, Paweletz CP, Charboneau L, et al Laser capture microdissection: beyond functional genomics to proteomics. Mol Diagn. 2000;5:301–307.

    PubMed  CAS  Google Scholar 

  4. Rodenhuis S, Slebos RJ. The ras oncogenes in human lung cancer. Am Rev Respir Dis. 1990;142:S27–S30.

    PubMed  CAS  Google Scholar 

  5. Westra WH, Slebos RJ, Offerhaus GJ, et al K-ras oncogene activation in lung adenocarcinomas from former smokers. Evidence that K-ras mutations are an early and irreversible event in the development of adenocarcinoma of the lung. Cancer (Phila). 1993;72:432–438.

    Article  CAS  Google Scholar 

  6. Nelson HH, Christiani DC, Mark EJ, et al Implications and prognostic value of K-ras mutation for early-stage lung cancer in women. J Natl Cancer Inst. 1999;91:2032–2038.

    Article  PubMed  CAS  Google Scholar 

  7. Chapman AD, Kerr KM. The association between atypical adenomatous hyperplasia and primary lung cancer. Br J Cancer. 2000;83:632–636.

    Article  PubMed  CAS  Google Scholar 

  8. De Reynies A, Boige V, Milano G, Faivre J, Laurent-Puig P. KRAS mutation signature in colorectal tumors significantly overlaps with the cetuximab response signature. J Clin Oncol. 2008;26:2228–2230.

    Article  PubMed  Google Scholar 

  9. Mao L, Hruban RH, Boyle JO, et al Detection of oncogene mutations in sputum precedes diagnosis of lung cancer. Cancer Res. 1994;54:1634–1637.

    PubMed  CAS  Google Scholar 

  10. Ronai Z, Yabubovskaya MS, Zhang E, et al K-ras mutation in sputum of patients with or without lung cancer. J Cell Biochem. Suppl 1996;25:172–176.

    Article  CAS  Google Scholar 

  11. Nakajima E, Hirano T, Konaka C, et al K-ras mutation in sputum of primary lung cancer patients does not always reflect that of cancerous cells. Int J Oncol. 2001;18:105–110.

    PubMed  CAS  Google Scholar 

  12. Destro A, Bianchi P, Alloisio M, et al K-ras and p16(INK4A) alterations in sputum of NSCLC patients and in heavy asymptomatic chronic smokers. Lung Cancer. 2004;44:23–32.

    Article  PubMed  CAS  Google Scholar 

  13. Nakamura H, Kawasaki N, Taguchi M, et al Survival impact of epidermal growth factor receptor overexpression in patients with non-small cell lung cancer: a meta-analysis. Thorax. 2006;61:140–145.

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki S, Dobashi Y, Sakurai H, et al Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas. An immunohistochemical and fluorescence in situ hybridization study. Cancer (Phila). 2005;103:1265–1273.

    Article  CAS  Google Scholar 

  15. Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–3807.

    Article  PubMed  CAS  Google Scholar 

  16. Lynch TJ, Bell DW, Sordella R, et al Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350: 2129–2139.

    Article  PubMed  CAS  Google Scholar 

  17. Nagahara H, Mimori K, Ohta M, et al Somatic mutations of epidermal growth factor receptor in colorectal carcinoma. Clin Cancer Res. 2005;11:1368–1371.

    Article  PubMed  CAS  Google Scholar 

  18. Lee JW, Soung YH, Kim SY, et al Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2005;11:2879–2882.

    Article  PubMed  CAS  Google Scholar 

  19. Johansen IS, Thomsen VO, Forsgren A, et al Detection of Mycobacterium tuberculosis complex in formalin-fixed, paraffin-embedded tissue specimens with necrotizing granulomatous inflammation by strand displacement amplification. J Mol Diagn. 2004;6:231–236.

    PubMed  CAS  Google Scholar 

  20. Marchetti G, Gori A, Catozzi L, et al Evaluation of PCR in detection of Mycobacterium tuberculosis from formalin-fixed, paraffin-embedded tissues: comparison of four amplification assays. J Clin Microbiol. 1998;6:1512–1517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hunt, J.L., Dacic, S. (2009). Applications in Anatomic Pathology. In: Allen, T., Cagle, P.T. (eds) Basic Concepts of Molecular Pathology. Molecular Pathology Library, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89626-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-89626-7_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-89625-0

  • Online ISBN: 978-0-387-89626-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics