Apoptosis and Cell Death

  • Pothana Saikumar
  • Manjeri A. Venkatachalam
Part of the Molecular Pathology Library book series (MPLB, volume 2)


Cell death plays a central role in multicellular organisms during their early development in sculpting the body parts and in their adult life by controlling cell numbers (homeostasis), and cell death further protects the organism overall by removing all cells damaged by disease, aging, infection, genetic mutation, and exposure to toxic agents. Kerr et al1 coined the term “apoptosis,” referring to a particular morphology of physiological cell death involving cell shrinkage, nuclear condensation, membrane blebbing, and cellular and nuclear fragmentation into membrane-bound apoptotic bodies (Fig. 4.1). The lipid changes that occur in the membrane eventually lead to phagocytosis of the apoptotic cellular fragments. Often apoptosis is used synonymously with programmed cell death, implying that death results from the regulated activation of a preexisting death program that is encoded in the genome. The first evidence of a genetic program that orchestrates physiological cell death came from the developmental studies of the nematode Caenorhabditis elegans. 2 Our knowledge of cell death and the mechanisms of its regulation increased dramatically in the past two decades with the discovery of several death genes in C. elegans 3 and their counterparts in mammals. Now it is clear that apoptotic cell death has important biological roles not only in development and homeostasis but also in the pathogenesis of several disease processes. Dysregulation of apoptosis is found in a wide spectrum of human diseases, including cancer, autoimmune diseases, neurodegenerative diseases, ischemic diseases, and viral infections.4 Interestingly, death programs other than apoptosis with different morphological features were also considered in controlling the cell numbers. These death programs could be directed by the condemned cell itself or by neighboring cells, with or without the help of humoral factors.


Adapter Protein Proapoptotic Protein Death Program Death Gene Death Domain Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257.PubMedGoogle Scholar
  2. 2.
    Horvitz HR. Worms, life, and death (Nobel lecture). ChemBioChem. 2003;4(8):697–711.CrossRefPubMedGoogle Scholar
  3. 3.
    Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44(6):817–829.Google Scholar
  4. 4.
    Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA. Apoptosis: definition, mechanisms, and relevance to disease. Am J Med. 1999;107(5):489–506.CrossRefPubMedGoogle Scholar
  5. 5.
    Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev. 2001;2(8):589–598.CrossRefGoogle Scholar
  6. 6.
    Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett. 1998;102-103:139–142.CrossRefPubMedGoogle Scholar
  7. 7.
    Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 2004;18(11):1272–1282.CrossRefPubMedGoogle Scholar
  8. 8.
    Formigli L, Papucci L, Tani A, et al. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol. 2000;182(1):41–49.CrossRefPubMedGoogle Scholar
  9. 9.
    Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–1721.CrossRefPubMedGoogle Scholar
  10. 10.
    Paglin S, Hollister T, Delohery T, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61(2):439–444.PubMedGoogle Scholar
  11. 11.
    Cuervo AM. Autophagy: in sickness and in health. Trends Cell Biol. 2004;14(2):70–77.CrossRefPubMedGoogle Scholar
  12. 12.
    Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003;112(12):1809–1820.PubMedGoogle Scholar
  13. 13.
    Karantza-Wadsworth V, White E. Role of autophagy in breast cancer. Autophagy. 2007;3(6):610–613.PubMedGoogle Scholar
  14. 14.
    Shen Y, Li DD, Wang LL, Deng R, Zhu XF. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy. 2008;4(8):1067–1068.PubMedGoogle Scholar
  15. 15.
    Mathew R, Kongara S, Beaudoin B, et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 2007;21(11):1367–1381.CrossRefPubMedGoogle Scholar
  16. 16.
    Marino G, Salvador-Montoliu N, Fueyo A, Knecht E, Mizushima N, Lopez-Otin C. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem. 2007;282(25):18573–18583.CrossRefPubMedGoogle Scholar
  17. 17.
    Wu YT, Tan HL, Huang Q, et al. Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy. 2008;4(4):457–466.PubMedGoogle Scholar
  18. 18.
    Kim KW, Mutter RW, Cao C, et al. Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 2006;281(48):36883–36890.CrossRefPubMedGoogle Scholar
  19. 19.
    Moretti L, Attia A, Kim KW, Lu B. Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy. 2007;3(2):142–144.PubMedGoogle Scholar
  20. 20.
    Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev. 2001;2(3):211–216.CrossRefGoogle Scholar
  21. 21.
    Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene. 2004;23(16):2891–2906.CrossRefPubMedGoogle Scholar
  22. 22.
    Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol. 2004;36(12):2445–2462.CrossRefPubMedGoogle Scholar
  23. 23.
    Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-dependent phosphorylation of G-alpha-interacting protein stimulates its GTPase accelerating activity and autophagy in human colon cancer cells. J Biol Chem. 2000;275(50):39090–39095.CrossRefPubMedGoogle Scholar
  24. 24.
    Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA. 2000;97(26):14376–14381.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang Y, Li X, Wang L, et al. An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci. 2004;117(pt 8):1525–1532.CrossRefPubMedGoogle Scholar
  26. 26.
    Sperandio S, Poksay K, de Belle I, et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ. 2004;11(10):1066–1075.CrossRefPubMedGoogle Scholar
  27. 27.
    Schneider D, Gerhardt E, Bock J, et al. Intracellular acidification by inhibition of the Na+/H+-exchanger leads to caspase-independent death of cerebellar granule neurons resembling paraptosis. Cell Death Differ. 2004;11(7):760–770.CrossRefPubMedGoogle Scholar
  28. 28.
    Valamanesh F, Torriglia A, Savoldelli M, et al. Glucocorticoids induce retinal toxicity through mechanisms mainly associated with paraptosis. Mol Vis. 2007;13:1746–1757.PubMedGoogle Scholar
  29. 29.
    Henics T, Wheatley DN. Cytoplasmic vacuolation, adaptation and cell death: a view on new perspectives and features. Biol Cell. 1999;91(7):485–498.CrossRefPubMedGoogle Scholar
  30. 30.
    Bowen ID, Morgan SM, Mullarkey K. Cell death in the salivary glands of metamorphosing Calliphora vomitoria. Cell Biol Int. 1993;17(1):13–33.CrossRefPubMedGoogle Scholar
  31. 31.
    Bowen ID, Mullarkey K, Morgan SM. Programmed cell death during metamorphosis in the blow-fly Calliphora vomitoria. Microsc Res Tech. 1996;34(3):202–217.CrossRefPubMedGoogle Scholar
  32. 32.
    Cornillon S, Foa C, Davoust J, Buonavista N, Gross JD, Golstein P. Programmed cell death in Dictyostelium. J Cell Sci. 1994;107(pt 10):2691–2704.PubMedGoogle Scholar
  33. 33.
    Nijhawan R, Rajwanshi A, Gautam U, Gupta SK. Cytoplasmic vacuolation, intracytoplasmic lumina, and DPAS staining in ductal carcinoma of the breast. Diagn Cytopathol 2003;28(6):291–294.CrossRefPubMedGoogle Scholar
  34. 34.
    Gilloteaux J, Jamison JM, Arnold D, Summers JL. Autoschizis: another cell death for cancer cells induced by oxidative stress. Ital J Anat Embryol. 2001;106(2 suppl 1):79–92.PubMedGoogle Scholar
  35. 35.
    Jamison JM, Gilloteaux J, Taper HS, Calderon PB, Summers JL. Autoschizis: a novel cell death. Biochem Pharmacol. 2002;63(10):1773–1783.CrossRefPubMedGoogle Scholar
  36. 36.
    Gilloteaux J, Jamison JM, Lorimer HE, et al. Autoschizis: a new form of cell death for human ovarian carcinoma cells following ascorbate:menadione treatment. Nuclear and DNA degradation. Tissue Cell 2004;36(3):197–209.CrossRefPubMedGoogle Scholar
  37. 37.
    Platt N, da Silva RP, Gordon S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol. 1998;8(9):365–372.CrossRefPubMedGoogle Scholar
  38. 38.
    Yuan J. Evolutionary conservation of a genetic pathway of programmed cell death. J Cell Biochem. 1996;60(1):4–11.CrossRefPubMedGoogle Scholar
  39. 39.
    Spector MS, Desnoyers S, Hoeppner DJ, Hengartner MO. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature. 1997;385(6617):653–656.CrossRefPubMedGoogle Scholar
  40. 40.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312–1316.CrossRefPubMedGoogle Scholar
  41. 41.
    Kumar S. Caspase function in programmed cell death. Cell Death Differ. 2007;14(1):32–43.CrossRefPubMedGoogle Scholar
  42. 42.
    Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell. 2003;11(2):519–527.CrossRefPubMedGoogle Scholar
  43. 43.
    Donepudi M, Mac Sweeney A, Briand C, Grutter MG. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell. 2003;11(2):543–549.CrossRefPubMedGoogle Scholar
  44. 44.
    Li P, Allen H, Banerjee S, Seshadri T. Characterization of mice deficient in interleukin-1 beta converting enzyme. J Cell Biochem. 1997;64(1):27–32.CrossRefPubMedGoogle Scholar
  45. 45.
    Schielke GP, Yang GY, Shivers BD, Betz AL. Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab. 1998;18(2):180–185.CrossRefPubMedGoogle Scholar
  46. 46.
    Janicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273(16):9357–9360.CrossRefPubMedGoogle Scholar
  47. 47.
    Varfolomeev EE, Schuchmann M, Luria V, et al. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity. 1998;9(2):267–276.CrossRefPubMedGoogle Scholar
  48. 48.
    Yeh WC, Pompa JL, McCurrach ME, et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science. 1998;279(5358):1954–1958.CrossRefPubMedGoogle Scholar
  49. 49.
    Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 1998;94(3):325–337.CrossRefPubMedGoogle Scholar
  50. 50.
    Magnusson C, Vaux DL. Signalling by CD95 and TNF receptors: not only life and death. Immunol Cell Biol. 1999;77(1):41–46.CrossRefPubMedGoogle Scholar
  51. 51.
    Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–1308.CrossRefPubMedGoogle Scholar
  52. 52.
    Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81(4):495–504.CrossRefPubMedGoogle Scholar
  53. 53.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. 1995;81(4):505–512.CrossRefPubMedGoogle Scholar
  54. 54.
    Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. 2002;9(10):1046–1056.CrossRefPubMedGoogle Scholar
  55. 55.
    Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17(6):1675–1687.CrossRefPubMedGoogle Scholar
  56. 56.
    Grell M, Zimmermann G, Gottfried E, et al. Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF. EMBO J. 1999;18(11):3034–3043.CrossRefPubMedGoogle Scholar
  57. 57.
    Natoli G, Costanzo A, Moretti F, Fulco M, Balsano C, Levrero M. Tumor necrosis factor (TNF) receptor 1 signaling downstream of TNF receptor-associated factor 2. Nuclear factor kappaB (NFkappaB)-inducing kinase requirement for activation of activating protein 1 and NFkappaB but not of c-Jun N-terminal kinase/stress-activated protein kinase. J Biol Chem. 1997;272(42):26079–26082.CrossRefPubMedGoogle Scholar
  58. 58.
    Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell. 1996;85(6):803–815.CrossRefPubMedGoogle Scholar
  59. 59.
    Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S. The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis. Nature. 1999;398(6730):777–785.CrossRefPubMedGoogle Scholar
  60. 60.
    Choi YH, Kim KB, Kim HH, et al. FLASH coordinates NF-kappa B activity via TRAF2. J Biol Chem. 2001;276(27):25073–25077.CrossRefPubMedGoogle Scholar
  61. 61.
    Thome M, Schneider P, Hofmann K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997;386(6624):517–521.CrossRefPubMedGoogle Scholar
  62. 62.
    Offit PA, Cunningham SL, Dudzik KI. Memory and distribution of virus-specific cytotoxic T lymphocytes (CTLs) and CTL precursors after rotavirus infection. J Virol. 1991;65(3):1318–1324.PubMedGoogle Scholar
  63. 63.
    Zajac AJ, Quinn DG, Cohen PL, Frelinger JA. Fas-dependent CD4+ cytotoxic T-cell-mediated pathogenesis ­during virus infection. Proc Natl Acad Sci USA. 1996;93(25):14730–14735.CrossRefPubMedGoogle Scholar
  64. 64.
    Wu Q, Kirschmeier P, Hockenberry T, et al. Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J Biol Chem. 2002;277(39):36329–36337.CrossRefPubMedGoogle Scholar
  65. 65.
    Kunz M, Ibrahim S, Koczan D, et al. Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma. Cell Growth Differ. 2001;12(3):137–145.PubMedGoogle Scholar
  66. 66.
    Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta. 1998;1366(1–2):139–149.PubMedGoogle Scholar
  67. 67.
    Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102(1):33–42.CrossRefPubMedGoogle Scholar
  68. 68.
    van Loo G, van Gurp M, Depuydt B, et al. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 2002;9(1):20–26.CrossRefPubMedGoogle Scholar
  69. 69.
    Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274(17):11549–11556.CrossRefPubMedGoogle Scholar
  70. 70.
    Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 2004;64(20):7183–7190.CrossRefPubMedGoogle Scholar
  71. 71.
    Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647–656.CrossRefPubMedGoogle Scholar
  72. 72.
    Hengartner MO, Horvitz HR. The ins and outs of programmed cell death during C. elegans development. Philos Trans R Soc Lond B Biol Sci. 1994;345(1313):243–246.CrossRefPubMedGoogle Scholar
  73. 73.
    Chang DW, Xing Z, Pan Y, et al. c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 2002;21(14):3704–3714.CrossRefPubMedGoogle Scholar
  74. 74.
    Peter ME. The flip side of FLIP. Biochem J. 2004;382(pt 2):e1–e3.PubMedGoogle Scholar
  75. 75.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90(3):405–413.CrossRefPubMedGoogle Scholar
  76. 76.
    Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell. 1998;94(6):727–737.CrossRefPubMedGoogle Scholar
  77. 77.
    Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. 1998;1(7):949–957.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhong LT, Sarafian T, Kane DJ, et al. bcl-2 inhibits death of central neural cells induced by multiple agents. Proc Natl Acad Sci USA. 1993;90(10):4533–4537.CrossRefPubMedGoogle Scholar
  79. 79.
    Reed JC. Bcl-2 family proteins. Oncogene. 1998;17(25):3225–3236.CrossRefPubMedGoogle Scholar
  80. 80.
    Saikumar P, Dong Z, Patel Y, et al. Role of hypoxia-induced Bax translocation and cytochrome c release in reoxygenation injury. Oncogene. 1998;17(26):3401–3415.CrossRefPubMedGoogle Scholar
  81. 81.
    Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam MA, White E, Saikumar P. Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem. 2003;278(7):5367–5376.CrossRefPubMedGoogle Scholar
  82. 82.
    Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P. Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem. 2001;276(21):18361–18374.CrossRefPubMedGoogle Scholar
  83. 83.
    Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9(3):459–470.CrossRefPubMedGoogle Scholar
  84. 84.
    Saikumar P, Mikhailova M, Pandeswara SL. Regulation of caspase-9 activity by differential binding to the apoptosome complex. Front Biosci. 2007;12:3343–3354.CrossRefPubMedGoogle Scholar
  85. 85.
    Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol. 2001;152(3):483–490.CrossRefPubMedGoogle Scholar
  86. 86.
    Deveraux QL, Reed JC. IAP family proteins: suppressors of apoptosis. Genes Dev. 1999;13(3):239–252.CrossRefPubMedGoogle Scholar
  87. 87.
    Imoto I, Yang ZQ, Pimkhaokham A, et al. Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res. 2001;61(18):6629–6634.PubMedGoogle Scholar
  88. 88.
    Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93(11):3601–3609.PubMedGoogle Scholar
  89. 89.
    Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3(8):917–921.CrossRefPubMedGoogle Scholar
  90. 90.
    Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001;8(3):613–621.CrossRefPubMedGoogle Scholar
  91. 91.
    Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17(12):1487–1496.CrossRefPubMedGoogle Scholar
  92. 92.
    Beere HM, Wolf BB, Cain K, et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol. 2000;2(8):469–475.CrossRefPubMedGoogle Scholar
  93. 93.
    Pandey P, Farber R, Nakazawa A, et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. Oncogene. 2000;19(16):1975–1981.CrossRefPubMedGoogle Scholar
  94. 94.
    Pandey P, Saleh A, Nakazawa A, et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000;19(16):4310–4322.CrossRefPubMedGoogle Scholar
  95. 95.
    Jiang X, Kim HE, Shu H, et al. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. ­Science. 2003;299(5604):223–226.PubMedGoogle Scholar
  96. 96.
    Widmann C, Gerwins P, Johnson NL, Jarpe MB, Johnson GL. MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis. Mol Cell Biol. 1998;18(4):2416–2429.PubMedGoogle Scholar
  97. 97.
    Sanghavi DM, Thelen M, Thornberry NA, Casciola-Rosen L, Rosen A. Caspase-mediated proteolysis during apoptosis: insights from apoptotic neutrophils. FEBS Lett. 1998;422(2):179–184.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Pothana Saikumar
    • 1
  • Manjeri A. Venkatachalam
    • 2
  1. 1.Department of PathologyUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Department of PathologyUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations