Skip to main content

Cell Adhesion Molecules

  • Chapter
  • First Online:
  • 2233 Accesses

Part of the book series: Molecular Pathology Library ((MPLB,volume 2))

Abstract

Cell adhesion molecules, also termed cell adhesion receptors, are one of three classes of macromolecules – along with extracellular matrix molecules and adhesion plaque proteins – that mediate cell adhesion, an activity which is critical for the commencement and maintenance of the three-dimensional structure and normal function of tissues.1,2 Cell adhesion molecules are predominantly transmembrane glycoproteins that mediate binding to extracellular matrix molecules or to associated receptors on other cells, in a manner that determines the specificity of cell–cell or cell–extracellular matrix interactions.1 There are five families of adhesion receptors – integrins, cadherins, immunoglobulin cell adhesion molecules (Ig CAMs), selectins, and CD44.1,39 Complexes formed by cell adhesion receptors are not static, but are dynamic units capable of obtai-ning and incorporating extracellular environmental signals, and are indeed the foundation of two-way signaling between the cell and its external environment.1,10 These cell adhesion molecule families are also involved with signaling between the interior and exterior of the cell, and as such are important in cell growth, proliferation, spatial organization, motility, migration, signaling, differentiation, apoptosis, and gene transcription in normal physiological growth and development as well as in pathological conditions such as inflammation and wound healing.5,9

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aplin AE, Howe A, Alahari SK, Juliano RL. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev. 1998;50:197–263.

    PubMed  CAS  Google Scholar 

  2. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell. 1996;84:345–357.

    Article  PubMed  CAS  Google Scholar 

  3. Gogali A, Charalabopoulos K, Constantopoulos S. Integrin receptors in primary lung cancer. Exp Oncol. 2004;26:106–110.

    PubMed  CAS  Google Scholar 

  4. Petruzzelli L, Takami M, Humes HD. Structure and function of cell adhesion molecules. Am J Med. 1999;106:467–476.

    Article  PubMed  CAS  Google Scholar 

  5. Nair KS, Naidoo R, Chetty R. Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol. 2005;58:343–351.

    Article  PubMed  CAS  Google Scholar 

  6. Charalabopoulos K, Gogali A, Kostoula OK, Constantopoulos SH. Cadherin superfamily of adhesion molecules in primary lung cancer. Exp Oncol. 2004;26:256–260.

    PubMed  CAS  Google Scholar 

  7. Meyer T, Hart IR. Mechanisms of tumour metastasis. Eur J Cancer. 1998;34:214–221.

    Article  PubMed  CAS  Google Scholar 

  8. Mousa SA. Cell adhesion molecules: potential therapeutic & diagnostic implications. Mol Biotechnol. 2008;38:33–40.

    Article  PubMed  CAS  Google Scholar 

  9. Lyons AJ, Jones J. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofac Surg. 2007;36:671–679.

    Article  PubMed  CAS  Google Scholar 

  10. Rosales C, O’Brian V, Kornberg L, Juliano RL. Signal transduction by cell adhesion receptors. Biochim Biophys Acta. 1995;1242:77–98.

    PubMed  Google Scholar 

  11. Nicolson GL. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochim Biophys Acta. 1988;948:175–224.

    PubMed  CAS  Google Scholar 

  12. Hynes RO. Integrins: versatility, modulation, and signalling in cell adhesion. Cell. 1992;69:11–25.

    Article  PubMed  CAS  Google Scholar 

  13. Han SW, Roman J. COX-2 inhibitors suppress integrin α5 expression in human lung carcinoma cells through activation of Erk: involvement of Sp1 and AP-1 sites. Int J Cancer. 2005;116:536–546.

    Article  PubMed  CAS  Google Scholar 

  14. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 2002;21:3919–3926.

    Article  PubMed  CAS  Google Scholar 

  15. Okegawa T, Li Y, Pong RC, Hsieh JT. Cell adhesion proteins as tumor suppressors. J Urol. 2002;167:1836–1843.

    Article  PubMed  CAS  Google Scholar 

  16. Mukhopadhyay NK, Gordon GJ, Chen CJ, et al. Activation of focal adhesion kinase in human lung cancer cells involves multiple and potentially parallel signaling events. J Cell Mol Med. 2005;9:387–397.

    Article  PubMed  CAS  Google Scholar 

  17. Damjanovich L, Albelda SM, Mette SA. Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am J Respir Cell Mol Biol. 1992;6:197–206.

    PubMed  CAS  Google Scholar 

  18. Hanby AN, Gilet CE, Pignatelli M, Stamp GW. Beta1 and beta4 integrin expression in metacarn and formalin fixed material from in situ ductal carcinoma of the breast. J Pathol. 1993;171:257–262.

    Article  PubMed  CAS  Google Scholar 

  19. Kitayama J, Nayawa H, Nakayama H, et al. Functional expression of beta1 and beta2 integrins on tumor infiltrating lymphocytes (TILs) in colorectal cancer. J Gastroenterol. 1999;34:327–333.

    Article  PubMed  CAS  Google Scholar 

  20. Bankhof H, Stein V, Remberger K. Differential expression of a6 and a2 very late-antigen integrins in the normal, hyperplastic and neoplastic prostate. Hum Pathol. 1993;24:243–248.

    Article  Google Scholar 

  21. Damkisson YP, Wilding JC, Filipe M, Hall PA, Pignatelli M. Cell–matrix interactions in gastric carcinoma. J Pathol. 1993;169:120.

    Google Scholar 

  22. Elenrieder V, Alder G, Gress TM. Invasion and metastasis in pancreatic cancer. Ann Oncol. 1999;4:46–50.

    Article  Google Scholar 

  23. Volpes R, Van der Oord J, Pesmet VJ. Distribution of the VLA family of integrins in normal and pathological human liver tissue. Gastroenterology. 1991;101:200–206.

    PubMed  CAS  Google Scholar 

  24. Bichler KH, Wechsel HW. The problematic nature of metastasized cell carcinoma. Anticancer Res. 1999;19:1463–1466.

    PubMed  CAS  Google Scholar 

  25. Stamb GW, Pignatelli M. Distribution of β1, α1, α2 and α3 integrin chains in basal cell carcinomas. J Pathol. 1991;103:307–313.

    Article  Google Scholar 

  26. Strobel T, Cannisha SA. Beta-1 integrins partly mediate binding of ovarian cancer cells to perimetral mesothelium in vitro. Gynecol Oncol. 1999;73:362–367.

    Article  PubMed  CAS  Google Scholar 

  27. Vessey BA, Albelda S, Buck CA, et al. Distribution of integrin cell adhesion molecules in endometrial cancer. Am J Pathol. 1995;146:717–726.

    Google Scholar 

  28. Hehlgans S, Haase M, Cordes N. Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta. 2007;1775:163–180.

    PubMed  CAS  Google Scholar 

  29. Yamada KM, Kennedy DW, Yamada SS, et al. Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration. Cancer Res. 1990;50:4485–4496.

    PubMed  CAS  Google Scholar 

  30. Albelda SM, Mette SA, Elder DE, et al. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990;50:6757–6764.

    PubMed  CAS  Google Scholar 

  31. Hamann A, Andrew DP, Pablonski-Westrich D, Holzmann B, Butcher EC. Role of alpha-4-integrins in lymphocyte homing to mucosal tissues in vivo. J Immunol. 1994;152:3282–3293.

    PubMed  CAS  Google Scholar 

  32. Yednock TA, Cannon C, Fritz LC, et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha-4-beta-1 integrin. Nature. 1992;356:63–66.

    Article  PubMed  CAS  Google Scholar 

  33. Springer TA. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol. 1995;57:827–872.

    Article  PubMed  CAS  Google Scholar 

  34. Hartmann TJ, Burger JA, Gloded A, Fujii N, Burger M. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene. 2005;24:4462–4471.

    Article  PubMed  CAS  Google Scholar 

  35. Dai DL, Makretsov N, Campos EI, et al. Increased expression of integrin-linked kinase is correlated with melanoma progression and poor patient survival. Clin Cancer Res. 2003;9:4409–4414.

    PubMed  CAS  Google Scholar 

  36. Graff JR, Deddens JA, Konicek BW, et al. Integrin-linked kinase expression increases with prostate tumor grade. Clin Cancer Res. 2001;7:1987–1991.

    PubMed  CAS  Google Scholar 

  37. Marotta A, Tan C, Gray V, et al. Dysregulation of integrin-linked kinase (ILK) signaling in colonic polyposis. Oncogene. 2001;20:6250–6257.

    Article  PubMed  CAS  Google Scholar 

  38. Takanami I. Increased expression of integrin-linked kinase is associated with shorter survival in non-small cell lung cancer. BMC Cancer. 2005;5:1.

    Article  PubMed  CAS  Google Scholar 

  39. Dedhar S. Cell-substrate interactions and signaling through ILK. Curr Opin Cell Biol. 2000;12:250–256.

    Article  PubMed  CAS  Google Scholar 

  40. Wu C, Dedhar S. Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol. 2001;155: 505–510.

    Article  PubMed  CAS  Google Scholar 

  41. Liotta LA, Stetler-Stevenson WG. Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res. 1991;51:5054–5059.

    Google Scholar 

  42. Furuta SM, Ilic D, Kanazawa S, et al. Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase FAK. Oncogene. 1995;11:1989–1995.

    PubMed  CAS  Google Scholar 

  43. Carelli S, Zadra G, Vaira V, et al. Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer. 2006;53:263–271.

    Article  PubMed  Google Scholar 

  44. Sanders MA, Basson MD. Collagen IV-dependent ERK activation in human Caco-2 intestinal epithelial cells requires focal adhesion kinase. J Biol Chem. 2000;275:38040–38047.

    Article  PubMed  CAS  Google Scholar 

  45. Guan JL, Shalloway D. Regulation of pp1256FAK both by cellular adhesion and by oncogenic transformation. Nature. 1992;358:690–692.

    Article  PubMed  CAS  Google Scholar 

  46. Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001;98:13790–13795.

    Article  PubMed  CAS  Google Scholar 

  47. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002; 133-143.

    Google Scholar 

  48. Agochiya M, Brunton VG, Owens DW, et al. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene. 1999;18:5646–5653.

    Article  PubMed  CAS  Google Scholar 

  49. Hauck CR, Hsia DA, Ilic D, Schlaepfer DD. V-Src SH3-enhanced interaction with focal adhesion kinase at beta 1 integrin-containing invadopodia promotes cell invasion. J Biol Chem. 2002;277:12487–12490.

    Article  PubMed  CAS  Google Scholar 

  50. Hsia DA, Mitra SK, Hauck CR, et al. Differential regulation of cell motility and invasion by FAK. J Cell Biol. 2003;160:753–767.

    Article  PubMed  CAS  Google Scholar 

  51. Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med. 1999;5:662–668.

    Article  PubMed  CAS  Google Scholar 

  52. Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 2001;20:4995–5004.

    Article  PubMed  CAS  Google Scholar 

  53. Cordes N. Overexpression of hyperactive integrin-linked kinase leads to increased cellular radiosensitivity. Cancer Res. 2004;64:5683–5692.

    Article  PubMed  CAS  Google Scholar 

  54. Takeichi M. Cadherin cell adhesion receptors as morphogenetic regulator. Science. 1991;251:1451–1459.

    Article  PubMed  CAS  Google Scholar 

  55. Kemler R. From cadherins to catenins: cytoplasmic protein inte-ractions and regulation of cell adhesion. Trends Genet. 1993;9:317–321.

    Article  PubMed  CAS  Google Scholar 

  56. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvamorulin associates with three independent proteins structurally related in different species. EMBO J. 1989;8:1711–1717.

    PubMed  CAS  Google Scholar 

  57. Hirano S, Kinoto N, Shimoyama Y, Hirohashi S, Takeichi M. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell. 1992;70:293–301.

    Article  PubMed  CAS  Google Scholar 

  58. Breier G, Breviario F, Caveda L, et al. Molecular cloning and expression of murine vascular endothelial cadherin in early stage development of cardiovascular system. Blood. 1996;87:630–641.

    PubMed  CAS  Google Scholar 

  59. Mayer B, Johnson JP, Leitl F, et al. E-cadherin expression in primary and metastatic gastric cancer: down-regulation correlates with cellular dedifferentiation and glandular disintegration. Cancer Res. 1993;53:1690–1695.

    PubMed  CAS  Google Scholar 

  60. Schipper JH, Frixen UH, Behrens J, et al. E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res. 1991;51:6328–6337.

    PubMed  CAS  Google Scholar 

  61. Bringuier PP, Umbas R, Schaafsma HE, et al. Decreased E-cadherin immunoreactivity correlates with poor survival in patients with bladder tumors. Cancer Res. 1993;53:2341–2345.

    Google Scholar 

  62. Dorudi S, Sheffield JP, Poulsom R, Northover JM, Hart IR. E-cadherin expression in colorectal cancer. An immunocytochemical and in situ hybridization study. Am J Pathol. 1993;142:981–986.

    PubMed  CAS  Google Scholar 

  63. Oka H, Shiozaki H, Kobayashi K, et al. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 1993;53:1696–1701.

    PubMed  CAS  Google Scholar 

  64. Ochiai A, Akimoto S, Shimoyama Y, et al. Frequent loss of α-catenin expression in scirrhous carcinomas with scattered cell growth. Jpn J Cancer Res. 1994;85:266–273.

    PubMed  CAS  Google Scholar 

  65. Kadowaki T, Shiozaki H, Inoue M, et al. E-cadherin and α-catenin expression in human esophageal cancer. Cancer Res. 1994;54:291–296.

    PubMed  CAS  Google Scholar 

  66. Takayama T, Shinozaki H, Shibamoto S, et al. β-Catenin expression in human cancer. Am J Pathol. 1996;148:39–46.

    PubMed  CAS  Google Scholar 

  67. Benjamin JM, Nelson WJ. Bench to bedside and back again: molecular mechanisms of alpha-catenin function and roles in tumorigenesis. Semin Cancer Biol. 2008;18:53–64.

    Article  PubMed  CAS  Google Scholar 

  68. Gavert N, Ben-Ze’ev A. Beta-catenin signaling in biological control and cancer. J Cell Biochem. 2007;1102:820–828.

    Article  CAS  Google Scholar 

  69. Avizienyte E, Frame MC. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr Opin Cell Biol. 2005;17:542–547.

    Article  PubMed  CAS  Google Scholar 

  70. Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer. 2002;34:255–268.

    Article  PubMed  CAS  Google Scholar 

  71. Kanai Y, Oda T, Shimoyama Y, et al. Alterations of the cadherin–catenin cell adhesion system in cancers. Princess Takamatsu Symp. 1994;24:51–62.

    PubMed  CAS  Google Scholar 

  72. Watabe M, Nagafuchi A, Tsukita S, Takeichi M. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J Cell Biol. 1994;127:247–256.

    Article  PubMed  CAS  Google Scholar 

  73. Lien WH, Klezovich O, Fernandez TE, Delrow J, Vasioukhin V. Alpha E-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science. 2006;311:1609–1612.

    Article  PubMed  CAS  Google Scholar 

  74. Vasioukhin V, Bauer C, Degenstein L, Wise B, Fuchs E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell. 2001;104:605–617.

    Article  PubMed  CAS  Google Scholar 

  75. Kato Y, Hirano T, Yoshida K, et al. Frequent loss of E-cadherin and/or catenins in intrabronchial lesions during carcinogenesis of the bronchial epithelium. Lung Cancer. 2005;48:323–330.

    Article  PubMed  Google Scholar 

  76. Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1997;75:464–474.

    Article  Google Scholar 

  77. Hirano S, Nose A, Hatta K, et al. Calcium dependent cell-cell adhesion molecules (cadherins). J Cell Biol. 1987;105:2501–2510.

    Article  PubMed  CAS  Google Scholar 

  78. Scher RL, Koch WM, Richtsmeier WJ. Induction of the intercellular adhesion molecule (ICAM-1) on squamous carcinoma by interferon gamma. Arch Otolaryngol Head Neck Surg. 1993;119:432–438.

    PubMed  CAS  Google Scholar 

  79. Takeichi M. Cadherins: a molecular family important in selective cell–cell adhesion. Annu Rev Biochem. 1990;59:237–252.

    Article  PubMed  CAS  Google Scholar 

  80. Behrens J, Mareel MM, Van Roy FM, Birchmeier W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell–cell adhesion. J Cell Biol. 1989;108:2435–2447.

    Article  PubMed  CAS  Google Scholar 

  81. Frixen UH, Behrens J, Sachs M, et al. E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol. 1991;113:173–185.

    Article  PubMed  CAS  Google Scholar 

  82. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, Van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–119.

    Article  PubMed  CAS  Google Scholar 

  83. Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998;153:333–339.

    PubMed  CAS  Google Scholar 

  84. Akimoto S, Ochiai A, Inomata M, Hirohashi S. Expression of cadherin–catenin cell adhesion molecules, phosphorylated tyrosine residues and growth factor receptor-tyrosine kinases in gastric cancer. Jpn J Cancer Res. 1998;89:829–836.

    PubMed  CAS  Google Scholar 

  85. Shimoyama Y, Nagafuchi A, Fujita S, et al. Cadherin dysfunction in a human cancer line: possible involvement of loss of α-catenin expression in reduced cell-cell adhesiveness. Cancer Res. 1992;52:5770–5774.

    PubMed  CAS  Google Scholar 

  86. Oda T, Kanai Y, Shimoyama Y, et al. Cloning of the human α-catenin cDNA and its aberrant mRNA in a human cancer cell line. Biochem Biophys Res Commun. 1993;193:897–904.

    Article  PubMed  CAS  Google Scholar 

  87. Mattijssen V, Peters HM, Schalwijk L, et al. E-cadherin expression in head and neck squamous-cell carcinoma is associated with clinical outcome. Int J Cancer. 1993;55:580–585.

    Article  PubMed  CAS  Google Scholar 

  88. Umbas R, Isaacs WB, Bringuier PP, et al. Decreased E-cadherin expression is associated with poor prognosis in prostate cancer. Cancer Res. 1994;15:3929–3933.

    Google Scholar 

  89. Nakanishi Y, Ochiai A, Akimoto S, et al. Expression of E-cadherin, α-catenin, β-catenin, and plakoglobinin esophageal carcinomas and its prognostic significance: immunohistochemical analysis of 96 lesions. Oncology. 1997;54:158–165.

    Article  PubMed  CAS  Google Scholar 

  90. Oyama T, Kanai Y, Ochiai A, et al. A truncated β-catenin disrupts the interaction between E-cadherin and α-catenin: a cause of loss of intercellular adhesiveness in human cancer cell lines. Cancer Res. 1994;54:6282–6287.

    PubMed  CAS  Google Scholar 

  91. Hoschuetzky H, Aberle H, Kemler R. β-Catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol. 1994;127:1375–1380.

    Article  PubMed  CAS  Google Scholar 

  92. Ochiai A, Akimoto S, Kanai Y, et al. c-erbB-2 gene product associates with catenins in human cancer cells. Biochem Biophys Res Commun. 1994;205:73–78.

    Article  PubMed  CAS  Google Scholar 

  93. Kanai Y, Ochiai A, Shibata T, et al. c-erbB-2 gene product directly associates with β-catenin and plakoglobin. Biochem Biophys Res Commun. 1995;208:1067–1072.

    Article  PubMed  CAS  Google Scholar 

  94. Dohadwala M, Yan SC, Luo J, et al. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and Snail in non-small cell lung cancer. Cancer Res. 2006;66:5338–5345.

    Article  PubMed  CAS  Google Scholar 

  95. Brown JR, DuBois RN. Cyclooxygenase as a target in lung cancer. Clin Cancer Res. 2004;10:4266s–4269s.

    Article  PubMed  CAS  Google Scholar 

  96. Dubinett SM, Sharma S, Huang M, et al. Cyclooxygenase-2 in lung cancer. Prog Exp Tumor Res. 2003;37:138–162.

    Article  PubMed  CAS  Google Scholar 

  97. Dannenberg AJ, Zakim D. Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Semin Oncol. 1999;26:499–504.

    PubMed  CAS  Google Scholar 

  98. Pold M, Zhu L, Sharma S, et al. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC ligand (CXCL) 5 and interleukin 8/CXCL8 in human non-small cell lung cancer. Cancer Res. 2004;64:1853–1860.

    Article  PubMed  CAS  Google Scholar 

  99. Hilda T, Yatabe Y, Achiwa H, et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998;58:3761–3764.

    Google Scholar 

  100. Huang M, Stolina M, Sharma S, et al. Non-small cell lung cancer cyclooxygenase-2 dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res. 1998;58:1208–1216.

    PubMed  CAS  Google Scholar 

  101. Sharma S, Yang SC, Zhu L, et al. Tumor cyclooxygenase-2/prostaglanding E2-dependent promotion of FOXP3expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005;65:5211–5220.

    Article  PubMed  CAS  Google Scholar 

  102. Sharma S, Zhu L, Yang SC, et al. Cyclooxygenase 2 inhibition promotes IFN-γ-dependent enhancement of antitumor responses. J Immunol. 2005;175:813–819.

    PubMed  CAS  Google Scholar 

  103. Jungck M, Grunhage F, Spengler U, et al. E-cadherin expression is homogeneously reduced in adenoma from patients with familial adenomatous polyposis: an immunohistochemical study of E-cadherin, β-catenin and cyclooxygenase-2 expression. Int J Colorectal Dis. 2004;19:438–445.

    Article  PubMed  CAS  Google Scholar 

  104. Riedl K, Krysan K, Pold M, et al. Multifaceted roles of cyclooxygenase-2 in lung cancer. Drug Resist Updat. 2004;7:169–184.

    Article  PubMed  CAS  Google Scholar 

  105. Cavallaro U, Christofori G. Cell adhesion and signaling by cadherins and Ig-CAMs in cancer. Natl Rev Cancer. 2004;4:118–132.

    CAS  Google Scholar 

  106. Choi YS, Shim YM, Kim SH, et al. Prognostic significance of E-cadherin and β-catenin in resected stage I non-small cell lung cancer. Eur J Cardiothorac Surg. 2003;24:441–449.

    Article  PubMed  CAS  Google Scholar 

  107. Liu D, Huang C, Kameyama K, et al. E-cadherin expression associated with differentiation and prognosis in patients with non-small cell lung cancer. Ann Thorac Surg. 2001;71:949–951.discussion 954-955.

    Article  PubMed  CAS  Google Scholar 

  108. Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res. 2006;66:944–950.

    Article  PubMed  CAS  Google Scholar 

  109. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small cell lung cancer (the IDEAL 1 Trial). J Clin Oncol. 2003;21:2237–2246.

    Article  PubMed  CAS  Google Scholar 

  110. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA. 2003;290:2149–2158.

    Article  PubMed  CAS  Google Scholar 

  111. Shepherd FA, Rodrigues P, Jose C, et al. The National Cancer Institute of Canada Clinical Trials Group. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–132.

    Article  PubMed  CAS  Google Scholar 

  112. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500.

    Article  PubMed  CAS  Google Scholar 

  113. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer – molecular and clinical predictors of outcome. N Engl J Med. 2005;353:133–144.

    Article  PubMed  CAS  Google Scholar 

  114. Cappuzzo F, Magrini E, Ceresoli GL, et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst. 2004;96:1133–1141.

    Article  PubMed  CAS  Google Scholar 

  115. Ohira T, Gemmill RM, Ferguson K, et al. WNT7a induces E-cadherin in lung cancer cells. Proc Natl Acad Sci USA. 2003;100:10429–10434.

    Article  PubMed  CAS  Google Scholar 

  116. Verschuren K, Remacle JE, Collart C, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5’-CACCT sequences in candidate target genes. J Biol Chem. 1999;27:20489–20498.

    Article  Google Scholar 

  117. Chinnadurai G. CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell. 2002;9:213–224.

    Article  PubMed  CAS  Google Scholar 

  118. Zhong Y, Delgado Y, Gomez J, Lee SW, Perez-Soler R. Loss of H-cadherin protein expression in human non-small cell lung cancer is associated with tumorigenicity. Clin Cancer Res. 2001;7:1683–1687.

    PubMed  CAS  Google Scholar 

  119. Agiostratidou G, Julit J, Phillips GR, Hazan RB. Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. J Mammary Gland Biol Neoplasia. 2007;12:127–133.

    Article  PubMed  Google Scholar 

  120. Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–746.

    Article  PubMed  CAS  Google Scholar 

  121. Kneuer C, Ehrhardt C, Radomski MW, Bakowsky U. Selectins-potential pharmacological targets. Drug Discov Today 2006;11:1034–1040.

    Article  PubMed  CAS  Google Scholar 

  122. McEver RP. Properties of GMP-140, an inducible granule membrane protein of platelets and endothelium. Blood Cells. 1990;16:73–80.

    PubMed  CAS  Google Scholar 

  123. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood. 1994;84:2068–2101.

    PubMed  CAS  Google Scholar 

  124. Springer TA. Adhesion receptors of the immune system. Nature. 1990;346:425–434.

    Article  PubMed  CAS  Google Scholar 

  125. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–314.

    Article  PubMed  CAS  Google Scholar 

  126. Lowe JB, Ward PA. Therapeutic inhibition of carbohydrate–protein interactions in vivo. J Clin Invest. 1997;100:S47–S51.

    PubMed  CAS  Google Scholar 

  127. Li L, Short HJ, Qian KX, et al. Characterization of glycoprotein ligands for P-selectin on a human small cell lung cancer cell line NCI-H345. Biochem Biophys Res Commun. 2001;288:637–644.

    Article  PubMed  CAS  Google Scholar 

  128. Tedder TF, Steeber DA, Chen A, Engle P. The selectins: vascular adhesion molecules. FASEB J. 1995;9:866–873.

    PubMed  CAS  Google Scholar 

  129. Kim YG, Kim MJ, Lim JS, et al. ICAM-3-induced cancer cell proliferation through the PI3K/Akt pathway. Cancer Lett. 2006;239:103–110.

    Article  PubMed  CAS  Google Scholar 

  130. Stone JP, Wagner DD. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest. 1993;92:804–813.

    Article  PubMed  CAS  Google Scholar 

  131. Yu CJ, Shih JY, Lee YC, et al. Sialyl Lewis antigens: association with MUC5AC protein and correlation with post-operative recurrence of non-small cell lung cancer. Lung Cancer. 2005;47:59–67.

    Article  PubMed  Google Scholar 

  132. Rosen SD, Bertozzi CR. The selectins and their ligands. Curr Opin Cell Biol. 1994;6:663–673.

    Article  PubMed  CAS  Google Scholar 

  133. Izumi Y, Taniuchi Y, Tsuji T, et al. Characterization of human colon carcinoma variant cells selected for sialyl Lex ­carbohydrate antigen: liver colonization and adhesion to vascular endothelial cells. Exp Cell Res. 1995;216:215–221.

    Article  PubMed  CAS  Google Scholar 

  134. Laack E, Nikbakht H, Peters A, et al. Expression of CEA-CAM1 in adenocarcinoma of the lung: a factor of independent prognostic significance. J Clin Oncol. 2002;20:4279–4284.

    Article  PubMed  Google Scholar 

  135. D’Amico TA, Brooks KR, Joshi MBM, et al. Serum protein expression predicts recurrence in patients with early-stage lung cancer after resection. Ann Thorac Surg. 2006;81:1982–1987.

    Article  PubMed  Google Scholar 

  136. Rosselli M, Mineo TC, Martini F, et al. Soluble selectin levels in patients with lung cancer. Int J Biol Marker. 2002;17:56–62.

    Google Scholar 

  137. Tsumatori G, Ozeki Y, Takagi K, Ogata T, Tanaka S. Relation between the serum E-selectin level and the survival rate of patients with resected non-small cell lung cancers. Jpn J Cancer Res. 1999;90:301–307.

    PubMed  CAS  Google Scholar 

  138. Gao Y, Wei M, Zheng S, Ba X. Chemically modified heparin inhibits the in vitro adhesion of nonsmall cell lung cancer cells to P-selectin. J Cancer Res Clin Oncol. 2006;132:257–264.

    Article  PubMed  CAS  Google Scholar 

  139. Borsig L, Wong R, Hynes RQ, Varki NM, Varki A. synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci. USA. 2002;99:2193–2198.

    Article  PubMed  CAS  Google Scholar 

  140. Borsig L, Wong R, Feramisco J, et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA. 2001;98:3352–3357.

    Article  PubMed  CAS  Google Scholar 

  141. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274:1123–1133.

    Article  PubMed  CAS  Google Scholar 

  142. van Buul JD, Mul FP, van der Schoot CE, Hordijk PL. ICAM-3 activation modulates cell–cell contacts of human bone marrow endothelial cells. J Vasc Res. 2004;41:28–37.

    Article  PubMed  CAS  Google Scholar 

  143. Chung YM, Kim GB, Park CS, et al. Increased expression of ICAM3 is associated with radiation resistance in cervical cancer. Int J Cancer. 2005;117:194–201.

    Article  PubMed  CAS  Google Scholar 

  144. Yasuda M, Tanaka Y, Tamura M, et al. Stimulation of β1 integrin down-regulates ICAM-1 expression and ICAM-1-dependent adhesion of lung cancer cells through focal adhesion kinase. Cancer Res. 2001;61:2022–2030.

    PubMed  CAS  Google Scholar 

  145. Schwartz RH. Models of T cell anergy: is there a common molecular mechanism? J Exp Med. 1996;184:1–8.

    Article  PubMed  CAS  Google Scholar 

  146. Shen J, Devery JM, King NJ. Adherence status regulates the primary cellular activation responses to the Flavivirus, West Nile. Immunology. 1995;84:254–264.

    PubMed  CAS  Google Scholar 

  147. Mukai S, Kagamu H, Shu S, Plautz GE. Critical role of CD11a (LFA-1) in therapeutic efficacy of systemically transferred antitumor effector T cells. Cell Immunol. 1999;192:122–132.

    Article  PubMed  CAS  Google Scholar 

  148. Liu YJ, Yan PS, Li J, Jia JF. Expression and significance of CD44s, CD44v6, and nm23 mRNA in human cancer. World J Gastroenterol. 2005;11:6601–6606.

    PubMed  Google Scholar 

  149. Liu J, Jiang G. CD44 and hematologic malignancies. Cell Mol Immunol. 2006;3:359–365.

    PubMed  CAS  Google Scholar 

  150. Georgolios A, Batistatou A, Charalabopoulos A, Manolopoulos L, Charalabopoulos K. The role of CD44 adhesion molecule in oral cavity cancer. Exp Oncol. 2006;28:94–98.

    PubMed  CAS  Google Scholar 

  151. Yasuda M, Nakano K, Yasumoto K, Tanaka Y. CD44: functional relevance to inflammation and malignancy. Histol Histopathol. 2002;17:945–950.

    PubMed  CAS  Google Scholar 

  152. Guo, YJ, Liu G, Wang X, et al. Potential use of soluble CD44 in serum as indicator of tumor burden and metastasis in patients with gastric or colon cancer. Cancer Res. 1994;54:422–426.

    PubMed  CAS  Google Scholar 

  153. Adamia S, Maxwell CA, Pilarski LM. Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Curr Drug Targets Cardiovasc Haematol Disord. 2005;5:3–14.

    Article  PubMed  CAS  Google Scholar 

  154. Wielenga VJM, Heider KH, Offerhaus JA, et al. Expression of cD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res. 1993;53:4754–4756.

    PubMed  CAS  Google Scholar 

  155. Takahashi K, Takahashi F, Hirama M, Tanabe KK, Fukuchi Y. Restoration of CD44S in non-small cell lung cancer cells enhanced their susceptibility to the macrophage cytotoxicity. Lung Cancer. 2003;41:145–153.

    Article  PubMed  Google Scholar 

  156. Li M, Amizuka N, Takeuchi K, et al. Histochemical evidence of osteoclastic degradation of extracellular matrix in osteolytic metastasis originating from human lung small carcinoma SBC-50 cells. Micro Res Tech. 2006;69:73–83.

    Article  CAS  Google Scholar 

  157. Zhao Y, Sato Y, Isaji T, et al. Branched N-glycans regulate the biological functions of integrins and cadherins. FEBS J. 2008;275:1939–1948.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy Craig Allen or Philip T. Cagle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Allen, T.C., Cagle, P.T. (2009). Cell Adhesion Molecules. In: Allen, T., Cagle, P.T. (eds) Basic Concepts of Molecular Pathology. Molecular Pathology Library, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-89626-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-89626-7_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-89625-0

  • Online ISBN: 978-0-387-89626-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics