Advertisement

Molecular Regulation of the State of Embryonic Stem Cells

  • Yuko Fujiwara
  • Stuart H. Orkin
Chapter

Abstract

Pluripotency is a defining feature of embryonic stem cells (ESCs). A mechanistic understanding of pluripotency should shed light on fundamental aspects of development. In this chapter, we review the extrinsic factors, protein, and gene regulatory networks and epigenetics of ESCs. With the availability of human ESCs and the capacity to reprogram somatic cells to a pluripotent state, we hope that a comprehensive description of the control of pluripotency in ESCs will contribute to the use of these cells in regenerative medicine.

Keywords

Inner Cell Mass Oct4 Expression Pluripotent State SOX2 Protein Nanog Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ananiev, G.E., Goldstein, S., Runnheim, R., Forrest, D.K., Zhou, S., Potamousis, K., Churas, C.P., Bergendahl, V., Thomson, J.A., Schwartz, D.C., 2008. Optical mapping discerns genome wide DNA methylation profiles. BMC Mol Biol 9, 68.PubMedGoogle Scholar
  2. Avery, K., Avery, S., Shepherd, J., Heath, P.R., Moore, H., 2008. Sphingosine-1-phosphate mediates transcriptional regulation of key targets associated with survival, proliferation and pluripotency in human embryonic stem cells. Stem Cells Dev 17(6), 1995–1205.Google Scholar
  3. Avilion, A.A., Nicolis, S.K., Pevny, L.H., Perez, L., Vivian, N., Lovell-Badge, R., 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126–140.PubMedGoogle Scholar
  4. Babaie, Y., Herwig, R., Greber, B., Brink, T.C., Wruck, W., Groth, D., Lehrach, H., Burdon, T., Adjaye, J., 2007. Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells 25, 500–510.PubMedGoogle Scholar
  5. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., Zhao, K., 2007. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.PubMedGoogle Scholar
  6. Beattie, G.M., Lopez, A.D., Bucay, N., Hinton, A., Firpo, M.T., King, C.C., Hayek, A., 2005. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells 23, 489–495.PubMedGoogle Scholar
  7. Beppu, H., Kawabata, M., Hamamoto, T., Chytil, A., Minowa, O., Noda, T., Miyazono, K., 2000. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221, 249–258.PubMedGoogle Scholar
  8. Bernstein, B.E., Kamal, M., Lindblad-Toh, K., Bekiranov, S., Bailey, D.K., Huebert, D.J., McMahon, S., Karlsson, E.K., Kulbokas, E.J., 3rd, Gingeras, T.R., Schreiber, S.L., Lander, E.S., 2005. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181.PubMedGoogle Scholar
  9. Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S.L., Lander, E.S., 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.PubMedGoogle Scholar
  10. Boguski, M.S., Lowe, T.M., Tolstoshev, C.M., 1993. dbEST-database for “expressed sequence tags”. Nat Genet 4, 332–333.PubMedGoogle Scholar
  11. Boheler, K.R., Tarasov, K.V., 2006. SAGE analysis to identify embryonic stem cell-predominant transcripts. Methods Mol Biol 329, 195-221.PubMedGoogle Scholar
  12. Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone, S.E., Levine, S.S., Zucker, J.P., Guenther, M.G., Kumar, R.M., Murray, H.L., Jenner, R.G., Gifford, D.K., Melton, D.A., Jaenisch, R., Young, R.A., 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.PubMedGoogle Scholar
  13. Boyer, L.A., Mathur, D., Jaenisch, R., 2006a. Molecular control of pluripotency. Curr Opin Genet Dev 16, 455–462.PubMedGoogle Scholar
  14. Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., Bell, G.W., Otte, A.P., Vidal, M., Gifford, D.K., Young, R.A., Jaenisch, R., 2006b. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.PubMedGoogle Scholar
  15. Brenner, S., Johnson, M., Bridgham, J., Golda, G., Lloyd, D.H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M., Roth, R., George, D., Eletr, S., Albrecht, G., Vermaas, E., Williams, S.R., Moon, K., Burcham, T., Pallas, M., DuBridge, R.B., Kirchner, J., Fearon, K., Mao, J., Corcoran, K., 2000. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18, 630–634.PubMedGoogle Scholar
  16. Buck, M.J., Lieb, J.D., 2004. ChIP-ChIP: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83, 349–360.PubMedGoogle Scholar
  17. Burdon, T., Stracey, C., Chambers, I., Nichols, J., Smith, A., 1999. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 210, 30–43.PubMedGoogle Scholar
  18. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., Zhang, Y., 2002. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.PubMedGoogle Scholar
  19. Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., Dalton, S., 2005. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132, 885–896.PubMedGoogle Scholar
  20. Chamberlain, S.J., Yee, D., Magnuson, T., 2008. Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26, 1496-1505.PubMedGoogle Scholar
  21. Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., Smith, A., 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.PubMedGoogle Scholar
  22. Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., Vrana, J., Jones, K., Grotewold, L., Smith, A., 2007. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234.PubMedGoogle Scholar
  23. Chazaud, C., Yamanaka, Y., Pawson, T., Rossant, J., 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10, 615–624.PubMedGoogle Scholar
  24. Chen, D., Zhao, M., Mundy, G.R., 2004. Bone morphogenetic proteins. Growth Factors 22, 233–241.PubMedGoogle Scholar
  25. Chen, X., Xu, H., Yuan, P., Fang, F., Huss, M., Vega, V.B., Wong, E., Orlov, Y.L., Zhang, W., Jiang, J., Loh, Y.H., Yeo, H.C., Yeo, Z.X., Narang, V., Govindarajan, K.R., Leong, B., Shahab, A., Ruan, Y., Bourque, G., Sung, W.K., Clarke, N.D., Wei, C.L., Ng, H.H., 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117.PubMedGoogle Scholar
  26. Cheng, L., Sung, M.T., Cossu-Rocca, P., Jones, T.D., MacLennan, G.T., De Jong, J., Lopez-Beltran, A., Montironi, R., Looijenga, L.H., 2007. OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 211, 1–9.PubMedGoogle Scholar
  27. Chew, J.L., Loh, Y.H., Zhang, W., Chen, X., Tam, W.L., Yeap, L.S., Li, P., Ang, Y.S., Lim, B., Robson, P., Ng, H.H., 2005. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25, 6031–6046.PubMedGoogle Scholar
  28. Christensen, J., Agger, K., Cloos, P.A., Pasini, D., Rose, S., Sennels, L., Rappsilber, J., Hansen, K.H., Salcini, A.E., Helin, K., 2007. RBP2 belongs to a family of demethylases, specific for tri- and dimethylated lysine 4 on histone 3. Cell 128, 1063–1076.PubMedGoogle Scholar
  29. Cole, M.F., Johnstone, S.E., Newman, J.J., Kagey, M.H., Young, R.A., 2008. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22, 746–755.PubMedGoogle Scholar
  30. Daheron, L., Opitz, S.L., Zaehres, H., Lensch, M.W., Andrews, P.W., Itskovitz-Eldor, J., Daley, G.Q., 2004. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778.PubMedGoogle Scholar
  31. Elling, U., Klasen, C., Eisenberger, T., Anlag, K., Treier, M., 2006. Murine inner cell mass-derived lineages depend on Sall4 function. Proc Natl Acad Sci U S A 103, 16319–16324.PubMedGoogle Scholar
  32. Elliott, S.T., Crider, D.G., Garnham, C.P., Boheler, K.R., Van Eyk, J.E., 2004. Two-dimensional gel electrophoresis database of murine R1 embryonic stem cells. Proteomics 4, 3813–3832.PubMedGoogle Scholar
  33. Endoh, M., Endo, T.A., Endoh, T., Fujimura, Y., Ohara, O., Toyoda, T., Otte, A.P., Okano, M., Brockdorff, N., Vidal, M., Koseki, H., 2008. Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. Development 135, 1513–1524.PubMedGoogle Scholar
  34. Euskirchen, G.M., Rozowsky, J.S., Wei, C.L., Lee, W.H., Zhang, Z.D., Hartman, S., Emanuelsson, O., Stolc, V., Weissman, S., Gerstein, M.B., Ruan, Y., Snyder, M., 2007. Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies. Genome Res 17, 898–909.PubMedGoogle Scholar
  35. Evans, M.J., Kaufman, M.H., 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156.PubMedGoogle Scholar
  36. Faust, C., Lawson, K.A., Schork, N.J., Thiel, B., Magnuson, T., 1998. The Polycomb-group gene eed is required for normal morphogenetic movements during gastrulation in the mouse embryo. Development 125, 4495–4506.PubMedGoogle Scholar
  37. Foshay, K.M., Gallicano, G.I., 2007. Small RNAs, big potential: the role of MicroRNAs in stem cell function. Curr Stem Cell Res Ther 2, 264–271.PubMedGoogle Scholar
  38. Francis, N.J., Kingston, R.E., 2001. Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2, 409–421.PubMedGoogle Scholar
  39. Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, S., Nakao, K., Miyazaki Ji, J., Niwa, H., 2002. Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev 16, 784–789.PubMedGoogle Scholar
  40. Gan, Q., Yoshida, T., McDonald, O.G., Owens, G.K., 2007. Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells 25, 2–9.PubMedGoogle Scholar
  41. Gasca, S., Canizares, J., De Santa Barbara, P., Mejean, C., Poulat, F., Berta, P., Boizet-Bonhoure, B., 2002. A nuclear export signal within the high mobility group domain regulates the nucleocytoplasmic translocation of SOX9 during sexual determination. Proc Natl Acad Sci U S A 99, 11199–11204.PubMedGoogle Scholar
  42. Gitan, R.S., Shi, H., Chen, C.M., Yan, P.S., Huang, T.H., 2002. Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12, 158–164.PubMedGoogle Scholar
  43. Gough, N.M., Gearing, D.P., King, J.A., Willson, T.A., Hilton, D.J., Nicola, N.A., Metcalf, D., 1988. Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor. Proc Natl Acad Sci U S A 85, 2623–2627.PubMedGoogle Scholar
  44. Greber, B., Lehrach, H., Adjaye, J., 2007a. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells 25, 455–464.PubMedGoogle Scholar
  45. Greber, B., Lehrach, H., Adjaye, J., 2007b. Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal. BMC Dev Biol 7, 46.PubMedGoogle Scholar
  46. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., Young, R.A., 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88.PubMedGoogle Scholar
  47. Hao, J., Li, T.G., Qi, X., Zhao, D.F., Zhao, G.Q., 2006. WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev Biol 290, 81–91.PubMedGoogle Scholar
  48. Hatfield, S.D., Shcherbata, H.R., Fischer, K.A., Nakahara, K., Carthew, R.W., Ruohola-Baker, H., 2005. Stem cell division is regulated by the microRNA pathway. Nature 435, 974–978.PubMedGoogle Scholar
  49. Herr, W., Cleary, M.A., 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 9, 1679–1693.PubMedGoogle Scholar
  50. Hollnagel, A., Oehlmann, V., Heymer, J., Ruther, U., Nordheim, A., 1999. Id genes are direct targets of bone morphogenetic protein induction in embryonic stem cells. J Biol Chem 274, 19838–19845.PubMedGoogle Scholar
  51. Hong, S., Cho, Y.W., Yu, L.R., Yu, H., Veenstra, T.D., Ge, K., 2007. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104, 18439–18444.PubMedGoogle Scholar
  52. Ikegami, K., Iwatani, M., Suzuki, M., Tachibana, M., Shinkai, Y., Tanaka, S., Greally, J.M., Yagi, S., Hattori, N., Shiota, K., 2007. Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells. Genes Cells 12, 1–11.PubMedGoogle Scholar
  53. Ivanova, N., Dobrin, R., Lu, R., Kotenko, I., Levorse, J., DeCoste, C., Schafer, X., Lun, Y., Lemischka, I.R., 2006. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538.PubMedGoogle Scholar
  54. James, D., Levine, A.J., Besser, D., Hemmati-Brivanlou, A., 2005. TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282.PubMedGoogle Scholar
  55. Johnson, D.S., Mortazavi, A., Myers, R.M., Wold, B., 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502.PubMedGoogle Scholar
  56. Kaji, K., Nichols, J., Hendrich, B., 2007. Mbd3, a component of the NuRD co-repressor complex, is required for development of pluripotent cells. Development 134, 1123–1132.PubMedGoogle Scholar
  57. Kanellopoulou, C., Muljo, S.A., Kung, A.L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D.M., Rajewsky, K., 2005. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19, 489–501.PubMedGoogle Scholar
  58. Keller, G., 2005. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19, 1129–1155.PubMedGoogle Scholar
  59. Kim, J., Chu, J., Shen, X., Wang, J., Orkin, S.H., 2008. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061.PubMedGoogle Scholar
  60. Kim, T.H., Barrera, L.O., Zheng, M., Qu, C., Singer, M.A., Richmond, T.A., Wu, Y., Green, R.D., Ren, B., 2005. A high-resolution map of active promoters in the human genome. Nature 436, 876–880.PubMedGoogle Scholar
  61. Kleinsmith, L.J., Pierce, G.B., Jr., 1964. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res 24, 1544–1551.PubMedGoogle Scholar
  62. Kuroda, T., Tada, M., Kubota, H., Kimura, H., Hatano, S.Y., Suemori, H., Nakatsuji, N., Tada, T., 2005. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 25, 2475–2485.PubMedGoogle Scholar
  63. Lengner, C.J., Camargo, F.D., Hochedlinger, K., Welstead, G.G., Zaidi, S., Gokhale, S., Scholer, H.R., Tomilin, A., Jaenisch, R., 2007. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1, 403–415.PubMedGoogle Scholar
  64. Levine, S.S., Weiss, A., Erdjument-Bromage, H., Shao, Z., Tempst, P., Kingston, R.E., 2002. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol 22, 6070–6078.PubMedGoogle Scholar
  65. Li, B., Carey, M., Workman, J.L., 2007a. The role of chromatin during transcription. Cell 128, 707–719.PubMedGoogle Scholar
  66. Li, J., Pan, G., Cui, K., Liu, Y., Xu, S., Pei, D., 2007b. A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells. J Biol Chem 282, 19481–19492.PubMedGoogle Scholar
  67. Li, J., Wang, G., Wang, C., Zhao, Y., Zhang, H., Tan, Z., Song, Z., Ding, M., Deng, H., 2007c. MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75, 299–307.PubMedGoogle Scholar
  68. Li, M., Sendtner, M., Smith, A., 1995. Essential function of LIF receptor in motor neurons. Nature 378, 724–727.PubMedGoogle Scholar
  69. Liedtke, S., Enczmann, J., Waclawczyk, S., Wernet, P., Kogler, G., 2007. Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1, 364–366.PubMedGoogle Scholar
  70. Loh, Y.H., Wu, Q., Chew, J.L., Vega, V.B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K.Y., Sung, K.W., Lee, C.W., Zhao, X.D., Chiu, K.P., Lipovich, L., Kuznetsov, V.A., Robson, P., Stanton, L.W., Wei, C.L., Ruan, Y., Lim, B., Ng, H.H., 2006. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38, 431–440.PubMedGoogle Scholar
  71. Loh, Y.H., Zhang, W., Chen, X., George, J., Ng, H.H., 2007. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 21, 2545–2557.PubMedGoogle Scholar
  72. Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., Calabrese, J.M., Dennis, L.M., Volkert, T.L., Gupta, S., Love, J., Hannett, N., Sharp, P.A., Bartel, D.P., Jaenisch, R., Young, R.A., 2008. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533.PubMedGoogle Scholar
  73. Martin, G.R., 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78, 7634–7638.PubMedGoogle Scholar
  74. Maruyama, M., Ichisaka, T., Nakagawa, M., Yamanaka, S., 2005. Differential roles for Sox15 and Sox2 in transcriptional control in mouse embryonic stem cells. J Biol Chem 280, 24371–24379.PubMedGoogle Scholar
  75. Masui, S., Nakatake, Y., Toyooka, Y., Shimosato, D., Yagi, R., Takahashi, K., Okochi, H., Okuda, A., Matoba, R., Sharov, A.A., Ko, M.S., Niwa, H., 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9, 625–635.PubMedGoogle Scholar
  76. Mathur, D., Danford, T.W., Boyer, L.A., Young, R.A., Gifford, D.K., Jaenisch, R., 2008. Analysis of the mouse embryonic stem cell regulatory networks obtained by ChIP-ChIP and ChIP-PET. Genome Biol 9, R126.PubMedGoogle Scholar
  77. Matsuda, T., Nakamura, T., Nakao, K., Arai, T., Katsuki, M., Heike, T., Yokota, T., 1999. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. Embo J 18, 4261–4269.PubMedGoogle Scholar
  78. Mendenhall, E.M., Bernstein, B.E., 2008. Chromatin state maps: new technologies, new insights. Curr Opin Genet Dev 18, 109–115.PubMedGoogle Scholar
  79. Metzger, E., Wissmann, M., Yin, N., Muller, J.M., Schneider, R., Peters, A.H., Gunther, T., Buettner, R., Schule, R., 2005. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439.PubMedGoogle Scholar
  80. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S., Bernstein, B.E., 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560.PubMedGoogle Scholar
  81. Mishina, Y., Suzuki, A., Ueno, N., Behringer, R.R., 1995. Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9, 3027–3037.PubMedGoogle Scholar
  82. Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., Yamanaka, S., 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.PubMedGoogle Scholar
  83. Miyagi, S., Masui, S., Niwa, H., Saito, T., Shimazaki, T., Okano, H., Nishimoto, M., Muramatsu, M., Iwama, A., Okuda, A., 2008. Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Lett 582, 2811–2815.PubMedGoogle Scholar
  84. Morin-Kensicki, E.M., Faust, C., LaMantia, C., Magnuson, T., 2001. Cell and tissue requirements for the gene eed during mouse gastrulation and organogenesis. Genesis 31, 142–146.PubMedGoogle Scholar
  85. Murchison, E.P., Partridge, J.F., Tam, O.H., Cheloufi, S., Hannon, G.J., 2005. Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 102, 12135–12140.PubMedGoogle Scholar
  86. Nagano, K., Taoka, M., Yamauchi, Y., Itagaki, C., Shinkawa, T., Nunomura, K., Okamura, N., Takahashi, N., Izumi, T., Isobe, T., 2005. Large-scale identification of proteins expressed in mouse embryonic stem cells. Proteomics 5, 1346–1361.PubMedGoogle Scholar
  87. Nakatake, Y., Fukui, N., Iwamatsu, Y., Masui, S., Takahashi, K., Yagi, R., Yagi, K., Miyazaki, J., Matoba, R., Ko, M.S., Niwa, H., 2006. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 26, 7772–7782.PubMedGoogle Scholar
  88. Nakayama, K., Tamura, Y., Suzawa, M., Harada, S., Fukumoto, S., Kato, M., Miyazono, K., Rodan, G.A., Takeuchi, Y., Fujita, T., 2003. Receptor tyrosine kinases inhibit bone morphogenetic protein-Smad responsive promoter activity and differentiation of murine MC3T3-E1 osteoblast-like cells. J Bone Miner Res 18, 827–835.PubMedGoogle Scholar
  89. Ng, R.K., Gurdon, J.B., 2008. Epigenetic inheritance of cell differentiation status. Cell Cycle 7, 1173–1177.PubMedGoogle Scholar
  90. Niakan, K.K., Davis, E.C., Clipsham, R.C., Jiang, M., Dehart, D.B., Sulik, K.K., McCabe, E.R., 2006. Novel role for the orphan nuclear receptor Dax1 in embryogenesis, different from steroidogenesis. Mol Genet Metab 88, 261–271.PubMedGoogle Scholar
  91. Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers, I., Scholer, H., Smith, A., 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.PubMedGoogle Scholar
  92. Nishimoto, M., Fukushima, A., Miyagi, S., Suzuki, Y., Sugano, S., Matsuda, Y., Hori, T., Muramatsu, M., Okuda, A., 2001. Structural analyses of the UTF1 gene encoding a transcriptional coactivator expressed in pluripotent embryonic stem cells. Biochem Biophys Res Commun 285, 945–953.PubMedGoogle Scholar
  93. Niwa, H., Burdon, T., Chambers, I., Smith, A., 1998. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 12, 2048–2060.PubMedGoogle Scholar
  94. Niwa, H., Miyazaki, J., Smith, A.G., 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372–376.PubMedGoogle Scholar
  95. Niwa, H., Toyooka, Y., Shimosato, D., Strumpf, D., Takahashi, K., Yagi, R., Rossant, J., 2005. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929.PubMedGoogle Scholar
  96. O'Carroll, D., Erhardt, S., Pagani, M., Barton, S.C., Surani, M.A., Jenuwein, T., 2001. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21, 4330–4336.PubMedGoogle Scholar
  97. Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D., Niwa, H., 2006. Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun 343, 159–166.PubMedGoogle Scholar
  98. Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., Hamada, H., 1990. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 60, 461–472.PubMedGoogle Scholar
  99. Okumura-Nakanishi, S., Saito, M., Niwa, H., Ishikawa, F., 2005. Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem 280, 5307–5317.PubMedGoogle Scholar
  100. Palmieri, S.L., Peter, W., Hess, H., Scholer, H.R., 1994. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 166, 259–267.PubMedGoogle Scholar
  101. Papaioannou, V.E., McBurney, M.W., Gardner, R.L., Evans, M.J., 1975. Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258, 70–73.PubMedGoogle Scholar
  102. Park, I.H., Lerou, P.H., Zhao, R., Huo, H., Daley, G.Q., 2008a. Generation of human-induced pluripotent stem cells. Nat Protoc 3, 1180–1186.PubMedGoogle Scholar
  103. Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., Daley, G.Q., 2008b. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.PubMedGoogle Scholar
  104. Pasini, D., Bracken, A.P., Jensen, M.R., Lazzerini Denchi, E., Helin, K., 2004. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. Embo J 23, 4061–4071.PubMedGoogle Scholar
  105. Pebay, A., Wong, R.C., Pitson, S.M., Wolvetang, E.J., Peh, G.S., Filipczyk, A., Koh, K.L., Tellis, I., Nguyen, L.T., Pera, M.F., 2005. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23, 1541–1548.PubMedGoogle Scholar
  106. Pera, E.M., Ikeda, A., Eivers, E., De Robertis, E.M., 2003. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 17, 3023–3028.PubMedGoogle Scholar
  107. Pesce, M., Scholer, H.R., 2000. Oct-4: control of totipotency and germline determination. Mol Reprod Dev 55, 452–457.PubMedGoogle Scholar
  108. Pesce, M., Wang, X., Wolgemuth, D.J., Scholer, H., 1998. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 71, 89–98.PubMedGoogle Scholar
  109. Poon, E., Clermont, F., Firpo, M.T., Akhurst, R.J., 2006. TGFbeta inhibition of yolk-sac-like differentiation of human embryonic stem-cell-derived embryoid bodies illustrates differences between early mouse and human development. J Cell Sci 119, 759–768.PubMedGoogle Scholar
  110. Pyle, A.D., Lock, L.F., Donovan, P.J., 2006. Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 24, 344–350.PubMedGoogle Scholar
  111. Qi, X., Li, T.G., Hao, J., Hu, J., Wang, J., Simmons, H., Miura, S., Mishina, Y., Zhao, G.Q., 2004. BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 101, 6027–6032.PubMedGoogle Scholar
  112. Rehberg, S., Lischka, P., Glaser, G., Stamminger, T., Wegner, M., Rosorius, O., 2002. Sox10 is an active nucleocytoplasmic shuttle protein, and shuttling is crucial for Sox10-mediated transactivation. Mol Cell Biol 22, 5826–5834.PubMedGoogle Scholar
  113. Remenyi, A., Scholer, H.R., Wilmanns, M., 2004. Combinatorial control of gene expression. Nat Struct Mol Biol 11, 812–815.PubMedGoogle Scholar
  114. Richards, M., Tan, S.P., Tan, J.H., Chan, W.K., Bongso, A., 2004. The transcriptome profile of human embryonic stem cells as defined by SAGE. Stem Cells 22, 51–64.PubMedGoogle Scholar
  115. Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O.L., He, A., Marra, M., Snyder, M., Jones, S., 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4, 651–657.PubMedGoogle Scholar
  116. Rodda, D.J., Chew, J.L., Lim, L.H., Loh, Y.H., Wang, B., Ng, H.H., Robson, P., 2005. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280, 24731–24737.PubMedGoogle Scholar
  117. Sakaki-Yumoto, M., Kobayashi, C., Sato, A., Fujimura, S., Matsumoto, Y., Takasato, M., Kodama, T., Aburatani, H., Asashima, M., Yoshida, N., Nishinakamura, R., 2006. The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 133, 3005–3013.PubMedGoogle Scholar
  118. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., Brivanlou, A.H., 2004. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10, 55–63.PubMedGoogle Scholar
  119. Scholer, H.R., Dressler, G.R., Balling, R., Rohdewohld, H., Gruss, P., 1990. Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. Embo J 9, 2185–2195.PubMedGoogle Scholar
  120. Scholer, H.R., Hatzopoulos, A.K., Balling, R., Suzuki, N., Gruss, P., 1989. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. Embo J 8, 2543–2550.PubMedGoogle Scholar
  121. Sharov, A.A., Piao, Y., Matoba, R., Dudekula, D.B., Qian, Y., VanBuren, V., Falco, G., Martin, P.R., Stagg, C.A., Bassey, U.C., Wang, Y., Carter, M.G., Hamatani, T., Aiba, K., Akutsu, H., Sharova, L., Tanaka, T.S., Kimber, W.L., Yoshikawa, T., Jaradat, S.A., Pantano, S., Nagaraja, R., Boheler, K.R., Taub, D., Hodes, R.J., Longo, D.L., Schlessinger, D., Keller, J., Klotz, E., Kelsoe, G., Umezawa, A., Vescovi, A.L., Rossant, J., Kunath, T., Hogan, B.L., Curci, A., D'Urso, M., Kelso, J., Hide, W., Ko, M.S., 2003. Transcriptome analysis of mouse stem cells and early embryos. PLoS Biol 1, E74.PubMedGoogle Scholar
  122. Shcherbata, H.R., Hatfield, S., Ward, E.J., Reynolds, S., Fischer, K.A., Ruohola-Baker, H., 2006. The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 5, 172–175.PubMedGoogle Scholar
  123. Shen, X., Liu, Y., Hsu, Y.J., Fujiwara, Y., Kim, J., Mao, X., Yuan, G.C., Orkin, S.H., in press. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in the maintenance of embryonic stem cell identity and pluripotency. Molecular Cell 32(4), 491–502.Google Scholar
  124. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., Shi, Y., 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.PubMedGoogle Scholar
  125. Shiota, K., Kogo, Y., Ohgane, J., Imamura, T., Urano, A., Nishino, K., Tanaka, S., Hattori, N., 2002. Epigenetic marks by DNA methylation specific to stem, germ and somatic cells in mice. Genes Cells 7, 961–969.PubMedGoogle Scholar
  126. Simon, J.A., Tamkun, J.W., 2002. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 12, 210–218.PubMedGoogle Scholar
  127. Singh, A.M., Hamazaki, T., Hankowski, K.E., Terada, N., 2007. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25, 2534–2542.PubMedGoogle Scholar
  128. Singla, D.K., Schneider, D.J., LeWinter, M.M., Sobel, B.E., 2006. wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochem Biophys Res Commun 345, 789–795.PubMedGoogle Scholar
  129. Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., Rogers, D., 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690.PubMedGoogle Scholar
  130. Smith, J.R., Vallier, L., Lupo, G., Alexander, M., Harris, W.A., Pedersen, R.A., 2008. Inhibition of Activin/Nodal signaling promotes specification of human embryonic stem cells into neuroectoderm. Dev Biol 313, 107–117.PubMedGoogle Scholar
  131. Soh, B.S., Song, C.M., Vallier, L., Li, P., Choong, C., Yeo, B.H., Lim, E.H., Pedersen, R.A., Yang, H.H., Rao, M., Lim, B., 2007. Pleiotrophin enhances clonal growth and long-term expansion of human embryonic stem cells. Stem Cells 25, 3029–3037.PubMedGoogle Scholar
  132. Sparmann, A., Van Lohuizen, M., 2006. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6, 846–856.PubMedGoogle Scholar
  133. Stadler, B.M., Ruohola-Baker, H., 2008. Small RNAs: keeping stem cells in line. Cell 132, 563–566.PubMedGoogle Scholar
  134. Stevens, L.C., Litle, C.C., 1954. Spontaneous testicular teratomas in an inbred strain of mice. Proc Natl Acad Sci U S A 40, 1080–1087.PubMedGoogle Scholar
  135. Stewart, C.L., Kaspar, P., Brunet, L.J., Bhatt, H., Gadi, I., Kontgen, F., Abbondanzo, S.J., 1992. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.PubMedGoogle Scholar
  136. Sumi, T., Tsuneyoshi, N., Nakatsuji, N., Suemori, H., 2008. Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/{beta}-catenin, Activin/Nodal and BMP signaling. Development 135(17), 2969–2979.Google Scholar
  137. Suzuki, A., Raya, A., Kawakami, Y., Morita, M., Matsui, T., Nakashima, K., Gage, F.H., Rodriguez-Esteban, C., Izpisua Belmonte, J.C., 2006. Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci U S A 103, 10294–10299.PubMedGoogle Scholar
  138. Takahashi, K., Okita, K., Nakagawa, M., Yamanaka, S., 2007a. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2, 3081–3089.PubMedGoogle Scholar
  139. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S., 2007b. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.PubMedGoogle Scholar
  140. Takahashi, K., Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.PubMedGoogle Scholar
  141. Takeda, K., Noguchi, K., Shi, W., Tanaka, T., Matsumoto, M., Yoshida, N., Kishimoto, T., Akira, S., 1997. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94, 3801–3804.PubMedGoogle Scholar
  142. Tanaka, T.S., Kunath, T., Kimber, W.L., Jaradat, S.A., Stagg, C.A., Usuda, M., Yokota, T., Niwa, H., Rossant, J., Ko, M.S., 2002. Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res 12, 1921–1928.PubMedGoogle Scholar
  143. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., Jones, J.M., 1998. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.PubMedGoogle Scholar
  144. Tokuzawa, Y., Kaiho, E., Maruyama, M., Takahashi, K., Mitsui, K., Maeda, M., Niwa, H., Yamanaka, S., 2003. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 23, 2699–2708.PubMedGoogle Scholar
  145. Tomioka, M., Nishimoto, M., Miyagi, S., Katayanagi, T., Fukui, N., Niwa, H., Muramatsu, M., Okuda, A., 2002. Identification of Sox-2 regulatory region which is under the control of Oct-3/4-Sox-2 complex. Nucleic Acids Res 30, 3202–3213.PubMedGoogle Scholar
  146. Tsukada, Y., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., Zhang, Y., 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.PubMedGoogle Scholar
  147. Uwanogho, D., Rex, M., Cartwright, E.J., Pearl, G., Healy, C., Scotting, P.J., Sharpe, P.T., 1995. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev 49, 23–36.PubMedGoogle Scholar
  148. Valdimarsdottir, G., Mummery, C., 2005. Functions of the TGFbeta superfamily in human embryonic stem cells. Apmis 113, 773–789.PubMedGoogle Scholar
  149. Vallier, L., Alexander, M., Pedersen, R.A., 2005. Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118, 4495–4509.PubMedGoogle Scholar
  150. van der Stoop, P., Boutsma, E.A., Hulsman, D., Noback, S., Heimerikx, M., Kerkhoven, R.M., Voncken, J.W., Wessels, L.F., Van Lohuizen, M., 2008. Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells. PLoS ONE 3, e2235.PubMedGoogle Scholar
  151. Van Hoof, D., Passier, R., Ward-Van Oostwaard, D., Pinkse, M.W., Heck, A.J., Mummery, C.L., Krijgsveld, J., 2006. A quest for human and mouse embryonic stem cell-specific proteins. Mol Cell Proteomics 5, 1261–1273.PubMedGoogle Scholar
  152. Velculescu, V.E., Zhang, L., Vogelstein, B., Kinzler, K.W., 1995. Serial analysis of gene expression. Science 270, 484–487.PubMedGoogle Scholar
  153. Voncken, J.W., Roelen, B.A., Roefs, M., De Vries, S., Verhoeven, E., Marino, S., Deschamps, J., Van Lohuizen, M., 2003. Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. Proc Natl Acad Sci U S A 100, 2468–2473.PubMedGoogle Scholar
  154. Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D.N., Theunissen, T.W., Orkin, S.H., 2006. A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368.PubMedGoogle Scholar
  155. Wang, L., Schulz, T.C., Sherrer, E.S., Dauphin, D.S., Shin, S., Nelson, A.M., Ware, C.B., Zhan, M., Song, C.Z., Chen, X., Brimble, S.N., McLean, A., Galeano, M.J., Uhl, E.W., D'Amour, K.A., Chesnut, J.D., Rao, M.S., Blau, C.A., Robins, A.J., 2007a. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110, 4111–4119.PubMedGoogle Scholar
  156. Wang, Y., Medvid, R., Melton, C., Jaenisch, R., Blelloch, R., 2007b. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39, 380–385.PubMedGoogle Scholar
  157. Ware, C.B., Horowitz, M.C., Renshaw, B.R., Hunt, J.S., Liggitt, D., Koblar, S.A., Gliniak, B.C., McKenna, H.J., Papayannopoulou, T., Thoma, B., Et al., 1995. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299.PubMedGoogle Scholar
  158. Watanabe, S., Umehara, H., Murayama, K., Okabe, M., Kimura, T., Nakano, T., 2006. Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25, 2697–2707.PubMedGoogle Scholar
  159. Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., Shi, Y., 2006. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481.PubMedGoogle Scholar
  160. Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A., Gough, N.M., 1988. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687.PubMedGoogle Scholar
  161. Wu, Q., Chen, X., Zhang, J., Loh, Y.H., Low, T.Y., Zhang, W., Zhang, W., Sze, S.K., Lim, B., Ng, H.H., 2006. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J Biol Chem 281, 24090–24094.PubMedGoogle Scholar
  162. Xiao, L., Yuan, X., Sharkis, S.J., 2006. Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells 24, 1476–1486.PubMedGoogle Scholar
  163. Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., Thomson, J.A., 2002. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20, 1261–1264.PubMedGoogle Scholar
  164. Xu, R.H., Peck, R.M., Li, D.S., Feng, X., Ludwig, T., Thomson, J.A., 2005. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2, 185–190.PubMedGoogle Scholar
  165. Xu, R.H., Sampsell-Barron, T.L., Gu, F., Root, S., Peck, R.M., Pan, G., Yu, J., Antosiewicz-Bourget, J., Tian, S., Stewart, R., Thomson, J.A., 2008. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3, 196–206.PubMedGoogle Scholar
  166. Yamanaka, S., 2008. Pluripotency and nuclear reprogramming. Philos Trans R Soc Lond B Biol Sci 363(1500), 2079–2087.Google Scholar
  167. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., Zhang, Y., 2006. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495.PubMedGoogle Scholar
  168. Yang, W.J., Yang, D.D., Na, S., Sandusky, G.E., Zhang, Q., Zhao, G., 2005. Dicer is required for embryonic angiogenesis during mouse development. J Biol Chem 280, 9330–9335.PubMedGoogle Scholar
  169. Yeom, Y.I., Ha, H.S., Balling, R., Scholer, H.R., Artzt, K., 1991. Structure, expression and chromosomal location of the Oct-4 gene. Mech Dev 35, 171–179.PubMedGoogle Scholar
  170. Ying, Q.L., Nichols, J., Chambers, I., Smith, A., 2003. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.PubMedGoogle Scholar
  171. Yoshida, K., Chambers, I., Nichols, J., Smith, A., Saito, M., Yasukawa, K., Shoyab, M., Taga, T., Kishimoto, T., 1994. Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech Dev 45, 163–171.PubMedGoogle Scholar
  172. Yoshida, K., Taga, T., Saito, M., Suematsu, S., Kumanogoh, A., Tanaka, T., Fujiwara, H., Hirata, M., Yamagami, T., Nakahata, T., Hirabayashi, T., Yoneda, Y., Tanaka, K., Wang, W.Z., Mori, C., Shiota, K., Yoshida, N., Kishimoto, T., 1996. Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci U S A 93, 407–411.PubMedGoogle Scholar
  173. Yuan, H., Corbi, N., Basilico, C., Dailey, L., 1995. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9, 2635–2645.PubMedGoogle Scholar
  174. Zappone, M.V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A.L., Lovell-Badge, R., Ottolenghi, S., Nicolis, S.K., 2000. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367–2382.PubMedGoogle Scholar
  175. Zhang, B., Pan, X., Anderson, T.A., 2006a. MicroRNA: a new player in stem cells. J Cell Physiol 209, 266–269.PubMedGoogle Scholar
  176. Zhang, J., Tam, W.L., Tong, G.Q., Wu, Q., Chan, H.Y., Soh, B.S., Lou, Y., Yang, J., Ma, Y., Chai, L., Ng, H.H., Lufkin, T., Robson, P., Lim, B., 2006b. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8, 1114–1123.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Children’s Hospital, Division of Hematology/OncologyHarvard Medical School/Howard Hughes Medical InstituteBostonUSA
  2. 2.Department of Pediatric Oncology, Children’s Hospital BostonDana Faber Cancer Institute, Harvard Medical School, Howard Hughes Medical InstituteBostonUSA

Personalised recommendations