Advertisement

Cancer Stem Cells and Skin Cancer

  • Caterina A. M. La Porta
Chapter

Abstract

Skin cancers are the fastest growing type of cancer in the United States and represent the most commonly diagnosed malignancy, surpassing lung, breast, colorectal and prostate cancer. The epidermis is a multilayered epithelium that covers the skin providing a waterproof barrier that essentially controls the rate of water loss from the body. Recently, cancer stem cells (CSCs) are defined as cells with the capability of self-renewal, the potential to develop into any cell in the overall tumour population and to proliferate driving the continued expansion of the population of malignant cells. Thereby, the properties of tumour-initiating cells closely parallel to the features that define normal stem cells, i.e. asymmetric division. The molecular signature of skin stem cells and cancer stem cells is discussed.

According to the CSC model, clinical success depends largely on the CSC population either in quantitative terms such as the relative or absolute number of CSCs or qualitative aspects related to biological features of CSCs. The new pharmacological perspectives are also discussed.

Keywords

Stem Cell Cancer Stem Cell Notch Signalling Hair Follicle Sebaceous Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

I thank Riccardo Bazzotti for the relevant contribution to the ABC picture.

References

  1. Alexandrow, M.G., Kawabata, M., Aakre, M., Moses, H.L. 1995. Overexpression of the c-myc oncoprotein blocks the growth inhibitory response but is required for the mitogenic effects of transforming growth factor beta1. Proc. Natl Acad. Sci. USA. 92: 3239–3243.PubMedGoogle Scholar
  2. Al Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F. 2003. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. 100: 3983–3996.Google Scholar
  3. Al-Hajj, M., Becker, M.W., Wicha, M., Weissman, I., Clarke, M.F. 2004. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14: 43–47.PubMedGoogle Scholar
  4. Allen, T.D., Potten, C.S. 1974. Fine-structural identification and organization of the epidermal proliferative unit. J. Cell. Sci. 15: 291–319.PubMedGoogle Scholar
  5. Altaba, A.R., Mas, C., Stecca, B. 2007. The Gli code: an information nexus regulating cell fate, stemness and cancer trends cell boil. 17: 438–447.Google Scholar
  6. Arnold, I., Watt, F.M. 2001. c-myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. 11: 558–568.PubMedGoogle Scholar
  7. American Cancer Society: Cancer Facts and Figures 2007. Atlanta, GA: American Cancer Society, 2007.Google Scholar
  8. Amoh, Y., Li, L., Katsuoka, K., Penman, S., Hoffman, R.M. 2005. Multipotent nestin-positive, keratin-negative hair follicle bulge stem cells can form neurons. Proc. Natl Acad. Sci. USA 102: 5530–5534.PubMedGoogle Scholar
  9. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Binger, D.D., Rich, J.N. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.PubMedGoogle Scholar
  10. Beachy, P.A., Karhadkar, S.S., Berman, D.M. 2004. Tissue repair and stem cell renewal in carcinogenesis. Nature 432: 324–331.PubMedGoogle Scholar
  11. Benitah, S.A., Frye, M., Glogauer, M., Watt, F.M. 2005. Different consequences of beta1 integrin deletion in neonatal and adult mouse epidermis reveals context-dependent role in integrins in regulating proliferation, differentiation, and intercellular communication. J. Invest. Dermatol. 125: 1215–1227.Google Scholar
  12. Berman, D.M., Karhadkar, S.S., Hallahan, A.R., Prichard, J.I.; Eberhart, C.G., Warkins, D.N., et al. 2002. Medulloblastomas growth inhibition by hedgehog pathway blockade. Science 297: 1559–1561.PubMedGoogle Scholar
  13. Blanpain, C., Lowry, W.E., Goeghegan, A., Polak, L., Fuchs, E. 2004. Self renewal, multipotency and the existence of two cell populations within an epithelial stem cell niche. Cell 118: 635–648.PubMedGoogle Scholar
  14. Bonnet, D., Dick, J.E. 1997. Human acute myeloid leukaemia is organized as a hierarchy that originates from a primitive haematopoietic cell. Nat. Med. 3: 730–737.PubMedGoogle Scholar
  15. Borue, X., Lee, S., Grove, J., Herzog, E.L., Harris, R., Diflo, T., Glusac, E., Hyman, K., Theise, N.D., Krause, D.S. 2004. Bone marrow derived cells contribute to epithelial engraftment during would healing. Am. J. Pathol. 165: 1767–1772.PubMedGoogle Scholar
  16. Brittan, M., Braun, K.M., Reynolds, L., Conti, F.J., Reynolds, A.R., Poulsom, R., Alison, M.R., Wright, N.A., Hodivala-Dilke, K.M. 2005. Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J. Pathol. 205: 1–13.PubMedGoogle Scholar
  17. Bull, J.J., Miller-Rover S., Patel S.V., Chronnell, C.M.T., McKay, I.A., Philpott, M.P. 2002. Contrasting localization of c-Myc with other Myc superfamily transcription factors in the human hair follicle and during the hair growth cycle. J. Invest. Dermatol. 116: 617–622.Google Scholar
  18. Clement, V., Sanchez, P., De Tribolet, N., Radovanovic I Altaba, A. 2007. Hedgehog-Gli signalling regulates human glioma growth cancer stem cell-renewal and tumorigenicity. Curr. Biol. 17: 165–172.Google Scholar
  19. Cotsarelis, G. 2006. Gene expression profiling gets to the root of human hair follicle stem cells. J. Clin. Invest. 116: 19–22.PubMedGoogle Scholar
  20. Cotsarelis, G., Sun, T.T., Levker, R.M. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: implication for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61: 1329–1337.PubMedGoogle Scholar
  21. Cozzio, A., Passegue, E., Ayton, P.M., Karsunky, H., Cleary, M.L., Weissmann, I.L. 2003. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17: 3029–3035.PubMedGoogle Scholar
  22. DasGupta, R., Fuchs, E. 1999. Multiple roles for activated LEF/TCF transcription complex during hair follicle development and differentiation. Development 126: 4557–4568.PubMedGoogle Scholar
  23. Daya-Grosjean, L., Couve-Privat, S. 2005. Sonic hedgehog signaling in basal cell carcinomas. Cancer Lett. 225: 181–192.PubMedGoogle Scholar
  24. de Vries, E., Steliarova-Foucher, E., Spatz, A., Ardanaz, E., eggermont, A.M., Coebergh, J.W. 2006. Skin cancer incidence and survival in European children and adolescents (1978–1997). Report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42: 2170–2182.PubMedGoogle Scholar
  25. Doyle, L.A., Ross, D.D. 2003. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22: 7340–7358.PubMedGoogle Scholar
  26. Fialkow, P.J., Gertler, S.M., Yoshida, A. 1967. Clonal origin of chronic myelocytic leukaemia in man. Proc. Natl Acad. Sci. USA 58: 1468–1471.PubMedGoogle Scholar
  27. Frank, N.Y., Pendse, S.S., Lapchak, P.H., Margaryan, A., Shlain, D., Doeing, C., Sayegh, M.H., Frank, M.H. 2003. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein a novel human ATP-binding cassette transporter. J. Biol. Chem. 278: 47156–47165.PubMedGoogle Scholar
  28. Frank, N.Y., Mnargaryan, A., Huang, Y., Schatton, T., Waaga-Gasser, A.M., Gasser, M., Sayegh, M.H., Sadee, W., Frank, M.H. 2005. ABCB5 mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 65: 4320–4333.PubMedGoogle Scholar
  29. Frye, M., And Watt, F.M. 2006. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr. Biol. 16: 971–981.PubMedGoogle Scholar
  30. Frye, M., Gardner, C., Li, E.R., Arnold, I., Watt, F.M. 2003. Evidences that c-myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130: 2793–2808.PubMedGoogle Scholar
  31. Fuchs, E., Merrill, B.J., Jamora, C., DasGupta, R. 2001. At the roots of a never ending. Cycle Dev. Cell. 1: 13–25.Google Scholar
  32. Fuchs, E., Tumbar, T., Guasch, G. 2003. Socializing with the neighbours, stem cells and their niche. Nat. Rev. Cancer 3: 444–451.Google Scholar
  33. Fuchs, E., Tumbar, T., Guasch, G. 2004. Socializing with the neighbours: stem cells and their niche. Cell 116: 769–778.PubMedGoogle Scholar
  34. Galmozzi, E., Facchetti, F., La Porta, C.A. 2006. Cancer stem cells and therapeutic perspectives. Curr. Med. Chem. 603–607.Google Scholar
  35. Gat, U., DasGupta, R., Degenstein, L., Fuchs, E. 1998. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell 95: 605–614.PubMedGoogle Scholar
  36. Gebhardt, A., Frye, M., Herold, S., Benitah, S.A., Braun, K., Samans, B., Watt, F.M., elsasser, H.P., eilers, M. 2006. Myc regulates keratinocytes adhesion and differentiation via complex formation with miz1. J. Cell Biol. 172: 139–149.PubMedGoogle Scholar
  37. Gilbert, C.W., Lajtha, L.G. 1965. The importance of cell population kinetics in determining the response to irradiation of normal and malignant tissue. In: Cellular Radiation Biology. Annual Symposium of Fundamental Cancer Research, University of Texas, MD Anderson Hospital and Tumor Institute, Houston, TX. Baltimore: Williams and Wilkins, pp. 118–154.Google Scholar
  38. Gottesman, M.M., Fojo, T., Bates, S.E. 2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2: 48–58.PubMedGoogle Scholar
  39. Grabber, C., von Boehmer, H., Look, A.T. 2006. Notch 1 activation in the molecular pathogenesis of T cell acute lymphoblastic leukaemia. Nat. Rev. Cancer 6: 347–359.Google Scholar
  40. Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeno, F., Vescovi, A. 2004. Cancer Res. 64: 7011.PubMedGoogle Scholar
  41. Grossi, M., Hiou-Feige, A., Tommasi Di Vignano, A., Calautti, E., Ostano, P., Lee, S., Chiorino, G., Dotto, G.P. 2005. Negative control of keratinocytes differentiation by Rho/CRIK signalling coupled with up-regulation of KyoT1/2 (FHL1) expression. Proc. Natl. Acad. Sci. 102: 11313–11318.Google Scholar
  42. Haas, N.K., Herlyn, M. 2005. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J. Invest. Dermatol. Symp. Proc. 10: 153–163.Google Scholar
  43. Hamburger, A.W., Salamon, S.E. 1977. Primary bioassay of human tumor stem cells. Science 197: 461–463.PubMedGoogle Scholar
  44. Holikova, Z., Massi, D., Lotti, T., Hercogova, J. 2004. Insight into the pathogenesis of sporadic basal cell carcinoma. Int. J. Dermatol. 43: 865–869.PubMedGoogle Scholar
  45. Huelsken, J., Vigel, R., erdmann, B., Cotsarelis, G., Birchmeier, W. 2005. Beta catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001: 533–545.Google Scholar
  46. Huntly, B.J.P., Shigematsu, H., Deguchi, K., Lee, B.H., Mizuno, S., Duclos, N., Rowan, R., Amaral, S., Curley, D., Williams, I.R., Akashi, K., Gilliland, D.G. 2004. MOZ-TIF2 but not BCR-ABL confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6: 587–596.PubMedGoogle Scholar
  47. Hutchin, M.E., Kariapper, M.S., Grachtchouk, M., Wang, A., Wei, L., Cummings, D., Liu, J., Michael, L.E., Glick, A., Dlugosz, A.A. 2005. Sustained hedgehog signalling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev. 19: 214–223.PubMedGoogle Scholar
  48. Ignatova, T.N., Kukekov, V.G., Laywell, E.D., Suslov, O.N., Vrionis, F.D., Steindler, D,A. 2002. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia M63: 193.Google Scholar
  49. Jacobs, J.J., Scheijen, B., von Cken, J.W., Kieboom, K., Berns, A., van Lohuizen, M. 1999. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc induced apoptosis via INK-4alpha/ARK. Gene Dev. 13: 2678–2690.PubMedGoogle Scholar
  50. Jamieson, C.H., Ailles, L.E., Dylla, S.J., Muijtjens, M., Jones, C., Zehnder, J.L., Gotlib, J., Li, K., Manz, M.G., Keating, A., Sawyers, C.L., Weissman, I.L. 2004. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351: 657–667.PubMedGoogle Scholar
  51. Klein, W.M., Wu, B.P., Zhao, S., Wu, H., Klein-Szanto, A.J., Tahan, S.R. 2007. Increased expression of stem cell markers in malignant melanoma. Mod. Pathol. 20: 102–107.PubMedGoogle Scholar
  52. Krivtsov, A.V., Twomey, D., Feng Z., Stubbs, M.C., Wang, Y., Faber, J., Levine, J.E., Wang, J., Hahn, W.C., Gilliland, D.G., Golub, T.R., Armstrong, S.A. 2006. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442: 818–822.PubMedGoogle Scholar
  53. Lajthe, L.G. 1979. Stem cell concepts. Differentiation 14: 23–34.Google Scholar
  54. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Caceres-Cortes, T., Minden, M., Paterson, B., Caligiuri, M.A., Dick, J.E. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.PubMedGoogle Scholar
  55. Leung, C., Lingbeek, M., Shakhova, O., Liu, J., Tanger, E., Saremaslani, P., van Lohuizen, M., Martino, S. 2004. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428: 337–341.PubMedGoogle Scholar
  56. Lin, M.H., Leimeister, C., Gessler, M., et al. 2000. Activation of the notch pathway in the hair cortex leads to aberrant differentiation of the adjacent hair-shaft layers. Development 127: 2421–2432.PubMedGoogle Scholar
  57. Lo Celso, C., Prowse, D.M., Watt, F.M. 2004. Transient activation of beta catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumors. Development 131: 1787–1799.PubMedGoogle Scholar
  58. Logan, C.Y., Nusse, R. 2004. The Wnt signalling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20: 781–810.PubMedGoogle Scholar
  59. Lopez-Rovira, T., Silva-Vergas, V., Watt, F.M. 2005. Different consequences of beta1integrin deletion in neonatal and adult epidermis reveals a context-dependent role of integrins in regulating proliferation, differentiation and intercellular communication. J. Invest. Dermatol. 125: 1215–1227.PubMedGoogle Scholar
  60. Lowry, W.E., Blanpain, C., Nowak, J.A., Guasch, G., Lewis, L., Fuchs, E. 2005. Defining the impact of beta-catein/Tcf transactivation on epithelial stem cells. Genes Dev. 19: 1596–1611.PubMedGoogle Scholar
  61. Lyle, S., Christofidou-Solomidou, M., Liu, Y., Elder, D.E., Albelda, S., Cotsarelis, G. 1998. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J. Cell. Sci. 111: 3179–3188.PubMedGoogle Scholar
  62. Marino, S. 2005. Medulloblastomas: developmental mechanisms out of control. Trends Mol. Med. 11: 337–341.Google Scholar
  63. Mihic-Probst, D., Kuster, A., Kilgus, S., Bode-Lesniewska, B., Ingold-Heppner, B., Leung, C., Storz, M., Seifert, B., Marino, S., Schraml, P., Dummer, R., Moch, H. 2007. Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int. J. Cancer 121: 1764–1770.PubMedGoogle Scholar
  64. Millar, S.E. 2002. Molecular mechanism regulating hair follicle development. J. Invest. Dermatol. 118: 216–225.PubMedGoogle Scholar
  65. Millis, A.A., Zheng, B., Wang, X.J., Vogel, H., Roop, D.R., Bradley, A. 1999. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398: 708–713.Google Scholar
  66. Molofsky, A.V., Pardal, R., Morrison, S.J. 2004. Diverse mechanisms regulate stem self-renewal. Curr. Opin. Cell Biol. 16: 700–707.PubMedGoogle Scholar
  67. Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., Gritti, A., Piccinini, A., Porro, D., Santinami, M., Invernici, G., Parati, E., Alessandri, G., La Porta, C.A.M. 2007. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumorigenic potential. Eur. J. Cancer 43: 935–946.PubMedGoogle Scholar
  68. Moriyama, M., Osawa, M., Mak, S., Ohtsuka, T., Yamamoto, N., Han, H., Delmas, V., Kageyama, R., Beermann, F., Larue, L., Nishikawa, S.-I. 2006. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J. Cell Biol. 173: 333–339.PubMedGoogle Scholar
  69. Morris, R.J., Potten, C.S. 1999. Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J. Invest. Dermatol. 112: 470–475.PubMedGoogle Scholar
  70. Morris, R.J., Lui, Y., Marles, L., Yang, Z., Trempus, C., Li, S., et al. 2004. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 22: 411–417.PubMedGoogle Scholar
  71. Niemann, C., Watt, F.M. 2002. Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol. 12: 185–192.PubMedGoogle Scholar
  72. Nishimura, E.K., Jordan, S.A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I.J., Barrandon, Y., Miyachi, Y., Nishikawa, S. 2002. Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416: 854–860.PubMedGoogle Scholar
  73. Ohyama, M. 2007. Hair follicle bulge. A fascinating reservoir of epithelial stem cells. Dermatol. Sci. 46: 81–89.Google Scholar
  74. Ohyama, M., Terunuma, A., Tock, C.L., Radonovich, M.F., Pise-Masison, C.A., Hopping, SB., Brady, J.N., Udey, MC., Vogel, J.C. 2006. Characterization and isolation of stem cells-enriched human follicle bulge cells. J. Clin. Invest. 116: 249–260.PubMedGoogle Scholar
  75. Okuyama, R., Ogawa, E., Nagoshi, H., Yabuki, M., Kurihara, A., Terui, T., Aiba, S., Obinata, M., Tagami, H., Ikawa, S. 2007. p53 homologue, p51/p63 maintains the immaturity of keratinocytes stem cells by inhibiting Notch1 activity. Oncogene 26: 4478–4488.PubMedGoogle Scholar
  76. Owens, D.M., Watt, F.M. 2003. Contribution of stem cells and differentiated cells to epidermal tumors. Nat. Rev. Cancer 3: 444–451.PubMedGoogle Scholar
  77. Pan, Y., Lin, M.H., Tian, X., et al. 2004. Gamma-secretase functions through Notch signalling to maintain in skin appendages but is not required for their patterning or initial morphogenesis. Dev. Cell 7: 731–743.PubMedGoogle Scholar
  78. Pasca di Magliano, M., Hebrok, M. 2003. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. Cancer 3: 903–911.PubMedGoogle Scholar
  79. Pelengaris, S., Khan, M., Evan, G. 2002. c-Myc: more than just a matter of life and death. Nat. Rev. Cancer 2: 764–776.Google Scholar
  80. Perez-Osada, J., Balmain, A. 2003. Stem-cell hierarchy in skin cancer. Nat. Rev. Cancer 3: 98–104.Google Scholar
  81. Potten, C.S. 1974. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 7: 77–88.PubMedGoogle Scholar
  82. Potten, C.S., Booth, C. 2002. Keratinocyte stem cells: a commentary. J. Invest. Dermatol. 119: 888–909.PubMedGoogle Scholar
  83. Powell, B.C., Passmore, E.A., Nesci, A., Dunn, S.M. 1998. The notch signalling pathway in hair growth. Mech. Dev. 78: 189–192.PubMedGoogle Scholar
  84. Reddy, S.T., Andl, T., Lu, M.M., Morrisey, E.E., Millar, S.E. 2004. Expression of frizzled genes in developing and postnatal hair follicle. J. Invest. Dermatol. 123: 275–282.PubMedGoogle Scholar
  85. Reya, T., Clevers, H. 2005. Wnt signalling in stem cells and cancer. Nature 434: 843–850.PubMedGoogle Scholar
  86. Reya, T., Morrison, S.J., Clarke, M.F., Weissman, I.L. 2001. Stem cells, cancer and cancer stem cells. Nature 414: 105–111.PubMedGoogle Scholar
  87. Rhee, H., Polak, L., Fuchs, E. 2006. Lhx2 maintains stem cell character in hair follicles. Science 312: 1946–1949.PubMedGoogle Scholar
  88. Ruiz, A., Altaba, I., Stecca, B., Sanchez, P. 2004. Hedgehog-Gli signalling in brain tumors: stem cells and para-developmental programs in cancer. Cancer Lett. 204: 145–157.Google Scholar
  89. Schatton, T., Murphy, G.F., Frank, N.Y., Yamaura, K., Waaga-Gasser, A.M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L.M., Weishaupt, C., Fuhlbrigge, R.C., Kupper, T.S., Sayegh, M.H., Frank, M.H. 2008. Identification of cells initiating human melanomas. Nature 415: 345–352.Google Scholar
  90. Shah, S., Islam, M.N., Dakshanamurthy, S., Rizvi, I., Rao, M., Herrell, R., Zinser, G., Valrance, M., Aranda, A., Moras, D., Norman, A., Welsh, J., Byers, S.W. 2006. The molecular basis of vitamin D receptor and beta catein cross-regulation. Mol. Cell 21: 799–809.Google Scholar
  91. Shiras, A., Chettiar, S.T., Shepal, V., Rajendran, G., Prasad, G.R., Shastry, P. 2007. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in human model of glioblastoma. Stem Cells 25: 1478–1489.PubMedGoogle Scholar
  92. Silva-Vargas, V., Lo Celso, C., Giangreco, A., Ofsrad, T., Prowse, D.M., Bown, K.M., Watt, F.M. 2005. Beta catenin and hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell 9: 121–131.Google Scholar
  93. Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Hemmati, H.D., Dirks, P.B. 2003. Cancer Res. 63.Google Scholar
  94. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., Dirks, P.B. 2004. Identification of human brain tumors initiating cells. Nature 432: 396–401PubMedGoogle Scholar
  95. Spradling, A., Drummond-Barbosa, D., Kai, T. 2001. Stem cells find their niche. Nature 414: 98–104.PubMedGoogle Scholar
  96. Stecca, B., Mas, C., Clement, V., Zbinden, M., Correa, R., Piguet, V., Beermann, F., Ruiz, I., Altaba, A. 2007. Melanoma require Hedgehog-Gli signalling regulated by interactions between GLI1 and the Ras-MEK/AKT pathways. Proc. Natl Acad. Sci. USA 104: 5895–5900.PubMedGoogle Scholar
  97. Taipale, N.J., Beachy, P.A. 2001. The hedgehog and Wnt signalling pathways in cancer. Nature 411: 349–354.PubMedGoogle Scholar
  98. Takahashi, K., And Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.PubMedGoogle Scholar
  99. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., Lavker, R.M. 2000. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102: 451–461.PubMedGoogle Scholar
  100. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W.E., Rendl, M., Fucks, E. 2004. Defining the epithelial stem cell niche in skin. Science 303: 359–363.PubMedGoogle Scholar
  101. Uyttenadaele, H., Panteleyev, A.A., De Berker, D., Tobin, D.T., Christiano, A.M. 2004. Activation of notch 1 in the hair follicle leads to cell fate switch and Mohawk alopecia. Differentiation 72: 396–409.Google Scholar
  102. Valk-Lingbreek, M.E., Bruggeman, S.W., van Lohiuzen, M. 2004. Stem cells and cancer, the polycomb connection. Cell 118: 409–418.Google Scholar
  103. van Mater, D., Kolligs, F.T., Degenstein, L., Fuchs, E. 1998. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell. 95: 605–614.Google Scholar
  104. van Rhenen, A., Feller, N., Kelder, A., Westra, A.H., Rombouts, E., Zweegman, S., van der Pol, M.A., Waisfisz, Q., Ossenkopele, G.J., Schuurthuis, G.J. 2005. High stem cell frequency in acute myeloid leukaemia at diagnosis predicts high minimal residual disease and poor survival. Clin. Cancer Res. 11: 6520–6527.PubMedGoogle Scholar
  105. Vauclair, S., Nicolas, M., Barrandon, Y., Radtke, F. 2005. Notch 1 is essential for postnatal hair follicle development and homeostasis. Dev. Biol. 284: 184–193.PubMedGoogle Scholar
  106. Vidal, V.P., Chaboissier, M.C., Lutzkendorf, S., Cotsarelis, G., Mill, P., Hui, C.C., Ortonne, N., Ortonne, J.P., Schedl, A. 2005. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr. Biol. 15: 1340–1351.PubMedGoogle Scholar
  107. Wakel, R.L., Kawachi, Y., Wakel, P.A., Wang, X.J., Roop, D.R. 2001. Deregulated expression of c-myc depletes epidermal stem cells. Nat. Genet. 28: 165–168.Google Scholar
  108. Wallenfang, M.R., Matunis, E. 2003. Developmental biology orienting stem cells. Science 301: 1490–1491.PubMedGoogle Scholar
  109. Watt, F.M. 2002. Role of integrins in regulating epidermal adhesion growth and differentiation. EMBO J. 21: 3919–3926.PubMedGoogle Scholar
  110. Wei, G., Ku, S., Ma, G.K., Saito, S., Tang, A.A., Zhang, J., Mao, J., Appella, E., Balman, A., Huang, E.J. 2007. HIPK2 repress β–catein mediated transcription, epidermal stem cell expansion, and skin tumorigenesis. Proc. Natl Acad. Sci. USA 104: 1304–13045.Google Scholar
  111. Wodarz, A., Nusse, R. 1998. Mechanisms of Wnt signalling in development. Ann. Rev. Cell Dev. Biol. 14: 59–88.Google Scholar
  112. Yang, A., Schweitzer, R., Sun, D., Kaghad, M., Walker, N., Bronson, R.T., Tabin, C., Sharpe, A., Caput, D., Crum, C., McKeon, F. 1999. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398: 714–718.PubMedGoogle Scholar
  113. Yilmaz, O.H., Valdez, R., Theisen, B.K., Guo, W., Ferguson, D.O., Wu, H., Morrison, S.J. 2006. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441: 475–482.PubMedGoogle Scholar
  114. Yue, Z., Jiang, T.X., Widelitz, R.B., Chuong, C.M. 2005. Mapping stem cell activities in the feather follicle. Nature 438: 1026–1029.PubMedGoogle Scholar
  115. Yue, Z., Jiang, T.X., Widelitz, R.B., Chuong, C.M. 2006. Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia. Proc. Natl Acad. Sci. USA 103: 951–955.PubMedGoogle Scholar
  116. Zanet, J., Pibre, S., Jacquet, C., Ramirez, A., De Alboran, I.M., Gandarillas, A., 2005. Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J Cell Sci. 118: 1693–1704.PubMedGoogle Scholar
  117. Zhou, S., Schuetz, J.D., Bunting, K.D., Colapietro, A.M., Sampath, J., Morris, J.J., Laqutina, I., Grosveld, G.C., Osawa, M., Nakauchi, H., Sorrentino, B.P. 2001. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7:1028–1034.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biomolecular Science BiotechnologyUniversity of Milan

Personalised recommendations