Fundamentals of Multiobjective Optimization

Part of the Springer Optimization and Its Applications book series (SOIA, volume 36)


In all of the mathematical programming problems considered thus far, we have assumed that one particular objective function, such as the maximization of profit or minimization of cost, was prespecified by some decision maker. In general, however, there exist a large variety of objectives—including maximizing profit, revenue, and market share; increasing environmental quality; etc. Zeleny [89, p. 1] states that “multiple objectives are all around us.” There are some empirical studies supporting this hypothesis. Smith, Boyes, and Peseau [70] found that for 557 large U.S. firms, sales revenue and profits were objectives followed by the firms. Beedles [6] used time series data for the time period 1929–1973 for three large firms and showed that the firms pursued sales revenue, profits, and stock price as their objectives.


Central Bank Multiobjective Optimization Social Welfare Function Multiobjective Optimization Problem Multiple Criterion Decision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. [1]
    H. Averch and L. L. Johnson, Behavior of the firm under regulatory constraint, Amer. Econ. Rev., 52 (1962), 1052–1069.Google Scholar
  2. [2]
    E. E. Bailey and J. C. Malone, Resource allocation and the regulated firm, Bell J. Econ. Manage. Sci., 1 -1 (1970), 129–142.CrossRefGoogle Scholar
  3. [3]
    E. Ballestero and C. Romero, Multiple Criteria Decision Making and Its Applications to Economic Problems, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.Google Scholar
  4. [4]
    W. Baumol, Business Behavior Value and Growth, Macmillan, NewYork, 1959.Google Scholar
  5. [5]
    W. Baumol, The theory of expansion of the firm, Amer. Econ. Rev., 52 (1962), 1078–1087.Google Scholar
  6. [6]
    W. L. Beedles, A micro-economic investigation of multi-objective firms, J. Finance, 32 (1977), 1217–1233.CrossRefGoogle Scholar
  7. [7]
    F. A. Behringer, Lexicographic quasiconcave multiobjective programming, Z. Oper. Res., 21 (1977), 103–116.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    G. R. Bitran, Duality for nonlinear multiple-criteria optimization problems, J. Oper. Theory Appl., 38 (1981), 367–401.CrossRefMathSciNetGoogle Scholar
  9. [9]
    B. Böhm and P. Brandner, Optimal economic policy making with an econometric model using interactive methods of vector optimization, in J. Gruber, ed., Econometric Decision Models: New Methods of Modeling and Applications, Lecture Notes in Economics and Mathematical Systems vol. 366, Springer-Verlag, Berlin, 1991, 149–163.Google Scholar
  10. [10]
    B. Böhm and M. Luptáčik, Optimisation with an environmental input–output model, in G. Boero and A. Silberston, eds., Environmental Economics, St. Martin’s Press, New York, 1995, 21–33.Google Scholar
  11. [11]
    M. Brown and N. Revankar,A generalized theory of the firm: An integration of the sales and profit maximization hypothesis, Kyklos, 24 -3 (1971), 427–443.CrossRefGoogle Scholar
  12. [12]
    G. A. Calvo, Staggered contracts in a utility-maximizing framework, J. Monetary Econ., 12 (1983), 383–398.CrossRefGoogle Scholar
  13. [13]
    G. C. Chow, Analysis and Control of Dynamic Systems,Wiley, NewYork, 1975.MATHGoogle Scholar
  14. [14]
    B. D. Craven, Strong vector minimization and duality, Z. Angew. Math. Mech., 60 (1980), 1–5.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Despontin, P. Nijkamp, and J. Spronk, eds., Macro-Economic Planning with Conflicting Goals, Lecture Notes in Economics and Mathematical Systems vol. 230, Springer- Verlag, Berlin, 1984.Google Scholar
  16. [16]
    C. J. van Eijk and J. Sandee, Quantitative determination of an optimum economic policy, Econometrica, 27 (1959), 1–33.MATHCrossRefGoogle Scholar
  17. [17]
    F. M. Fisher, Book reviewofW. Baumol, Business BehaviorValue and Growth, J. Political Econ., 68 (1960), 314–315.Google Scholar
  18. [18]
    K.A. Fox, J. K. Sengupta, and E. Thorbecke, The Theory of Quantitative Economic Policy with Applications to Economic Growth and Stabilization, North-Holland, Amsterdam, 1966.Google Scholar
  19. [19]
    J. A. Frankel and M. Funke,A two-country analysis of international targeting of nominal GNP, Rev. Political Econ., 83 (1993), 69–106.Google Scholar
  20. [20]
    B. M. Friedman, Economic Stabilization Policy: Methods in Optimization, North- Holland, Amsterdam, 1975.MATHGoogle Scholar
  21. [21]
    R. Frisch, Circulation planning: Proposal for a national organisation of a commodity and service exchange, Econometrica, 3 (1934), 68–82.Google Scholar
  22. [22]
    R. Frisch, A Memorandum on Price-Wage-Tax-Subsidy Policies as Instruments in Maintaining Optimal Envelopment, Document E (CN1/Dub 2), United Nations, New York, 1949; reprinted as Memorandum, Institute of Economics, University of Oslo, Oslo, 1953.Google Scholar
  23. [23]
    R. Frisch, Macroeconomics and linear programming, in Twenty-Five Economic Essays in Honour of Eric Lindahl, Ekonomisk Tidskrift, Stockholm, 1956.Google Scholar
  24. [24]
    R. Frisch, Numerical Determination of a Quadratic Preference Function for Use in Macroeconomic Programming Memorandum 14, Institute of Economics, University of Oslo, Oslo, 1957; reprinted in “Studies in Honour of Gustavo del Vecchio,” G. Econ. Ann. Econ., 1 (1961), 43–83.Google Scholar
  25. [25]
    H. Frisch and S. Staudinger, Inflation targeting versus nominal income targeting, J. Econ., 78 (2003), 113–137.MATHCrossRefGoogle Scholar
  26. [26]
    W. Fritz, Empirische Zielforschung und Operations Research: Eine Untersuchung unternehmerischer Ziele und ihre Konsequenzen für das Operations Research, Oper. Res. Spektrum, 8 (1986) 99–108.CrossRefGoogle Scholar
  27. [27]
    T. Gal, Th. J. Stewart, and Th. Hanne, eds., Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.MATHGoogle Scholar
  28. [28]
    D. Gale, H.W. Kuhn, and A.W. Tucker, Linear programming and the theory of games, in T. C.Koopmans, ed., Activity Analysis of Production and Allocation, Cowles Commission Monograph 13,Wiley, NewYork, 1951, Chapter XIX, 317–329.Google Scholar
  29. [29]
    A. M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22 (1968), 618–630.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    J. Gruber, ed., Econometric Decision Models, Lecture Notes in Economics and Mathematical Systems vol. 208, Springer-Verlag, Berlin, 1983.Google Scholar
  31. [31]
    J. Gruber, ed., Econometric Decision Models: New Methods of Modeling and Applications, Lecture Notes in Economics and Mathematical Systems vol. 366, Springer-Verlag, Berlin, 1991.Google Scholar
  32. [32]
    M. Hall, On the goals on the firm: Comment, Q. J. Econ., 80 (1966) 154–158.CrossRefGoogle Scholar
  33. [33]
    R. Hall and N. G. Mankiw, Nominal income targeting, in N. G. Mankiw, ed., Monetary Policy, National Bureau of Economic Research, Cambridge, MA, 1994.Google Scholar
  34. [34]
    J. R. Hicks, Annual survey of economic theory: The theory of monopoly, Econometrica, 34 (1935), 1–20.CrossRefGoogle Scholar
  35. [35]
    H. Isermann, Existence and duality in multiple objective linear programming, in H. Thiriez and S. Zionts, eds., Multiple Criteria Decision Making, Lecture Notes in Economics and Mathematical Systems vol. 130, Springer-Verlag, Berlin, 1976, 64–75.Google Scholar
  36. [36]
    H. Isermann, The relevance of duality in multiple objective linear programming, TIMS Stud. Manage. Sci., 6 (1977), 241–262.Google Scholar
  37. [37]
    H. Isermann, Duality in multiple objective linear programming, in S. Zionts, ed., Multiple Criteria Problem Solving: Proceedings of a Conference, Buffalo, 1977, Lecture Notes in Economics and Mathematical Systems vol. 155, Springer-Verlag, Berlin, 1978, 274–285.Google Scholar
  38. [38]
    H. Isermann, On some relations between a dual pair of multiple objective linear programs, Z. Oper. Res., 22 (1978), 33–41.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    H. Isermann, Linear lexicographic optimization, Oper. Res. Spektrum, 4 (1982), 223–228.MATHCrossRefGoogle Scholar
  40. [40]
    L. R. Klein, The use of econometric models as a guide to economic policy, Econometrica, 15 (1947), 33–47.CrossRefGoogle Scholar
  41. [41]
    T. C. Koopmans, Analysis of production as an efficient combination of activities, in T. C.Koopmans, ed., Activity Analysis of Production and Allocation, Cowles Commission Monograph 13, Wiley, NewYork, 1951, 33–97.Google Scholar
  42. [42]
    J. S. H. Kornbluth, Duality indifference and sensitivity analysis in multiple objective linear programming, Oper. Res. Q., 25 (1974), 599–614.MATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    H.W. Kuhn and A.W. Tucker, Nonlinear programming, in J. Neyman, ed., Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 1951, 481–492.Google Scholar
  44. [44]
    O. Lange, The foundations of welfare economics, Econometrica, 10 (1942), 215–228.CrossRefGoogle Scholar
  45. [45]
    L. Leiderman and L. E. O. Svensson, Inflation Targets, CEPR, London, 1995.Google Scholar
  46. [46]
    W. W. Leontief, Environmental repercussions and the economic structure: An input–output approach, Rev. Econ. Statist., 52 (1970), 262–271.CrossRefGoogle Scholar
  47. [47]
    W. Leontief, Theoretical assumptions and nonobserved facts, Amer. Econ. Rev., 61 (1971), 1–7.Google Scholar
  48. [48]
    M. Luptáčik and B. Böhm (1994), An environmental input–output model with multiple criteria, Ann. Oper. Res., 54, 119–127.MATHCrossRefGoogle Scholar
  49. [49]
    M. Luptáčik and F. Turnovec, Lexicographic geometric programming, Eur. J. Oper. Res., 51 (1991), 259–269.MATHCrossRefGoogle Scholar
  50. [50]
    I. Marusciac, On Fritz John type optimality criterion in multiobjective optimization, Anal. Numér. Théorie Approx., 11 (1982), 109–114.MATHMathSciNetGoogle Scholar
  51. [51]
    B. T. McCallum, The Alleged Instability of Nominal Income Targeting, Paper G97/6, Reserve Bank of New Zealand, Wellington, 1997.Google Scholar
  52. [52]
    B. T. McCallum and E. Nelson, Nominal income targeting in an open economics optimizing model, J. Monetary Econ., 11 (1999), 139–168.CrossRefGoogle Scholar
  53. [53]
    R. Marris, The Economic Theory of “Managerial” Capitalism, Free Press of Glencoe, Glencoe, IL, 1964.Google Scholar
  54. [54]
    A. P. Mastenbroek and P. Nijkamp, A spatial environmental model for an optimal allocation of investments, in P. Nijkamp, ed., Environmental Economics, Vol.2: Methods, Nijhoff Social Sciences, Leiden, The Netherlands, 1976.Google Scholar
  55. [55]
    R. Neck, Ch. Richter, and P. Mooslechner, eds., Quantitative Economic Policy: Essays in Honour of Andrew Hughes Hallet, Springer, Berlin, 2008.Google Scholar
  56. [56]
    T. Negishi,Welfare economics and existence of an equilibrium for a competitive economy, Metroeconomica, 12 (1960), 92–97.MATHCrossRefGoogle Scholar
  57. [57]
    P. Nijkamp, Environmental Policy Analysis,Wiley, Chichester, UK, 1980.Google Scholar
  58. [58]
    D. K. Osborne, On the goals of the firm, Q. J. Econ., 77 (1964), 592–603.CrossRefGoogle Scholar
  59. [59]
    V. Pareto, Manuale di Economia Politica, Societa Editrice Libraria, Milan, 1906 (in Italian); Manual of Political Economy, Macmillan, New York, 1971 (in English; A. S. Schwier, transl.).Google Scholar
  60. [60]
    M. L. Petit, Control Theory and Dynamic Games in Economic Policy Analysis, Cambridge University Press, Cambridge, UK, 1990.MATHGoogle Scholar
  61. [61]
    J. Rawls, A Theory of Justice, Harvard University Press, Cambridge, MA, 1971.Google Scholar
  62. [62]
    K. Ritter, Optimization theory in linear spaces III, Math. Ann., 184 (1970), 133–154.MATHCrossRefMathSciNetGoogle Scholar
  63. [63]
    J. M. Roberts, NewKeynesian economics and the Phillips curve, J. Money Credit Banking, 27 (1995), 975–984.CrossRefGoogle Scholar
  64. [64]
    C. Romero, A note on distributive equity and social efficiency, J. Agric. Econ., 52 -2 (2001), 110–112.Google Scholar
  65. [65]
    R. Rosenberg, Profit constraint revenue maximization: A note, Amer. Econ. Rev., 61 (1971), 208–209.Google Scholar
  66. [66]
    E. E. Rosinger, Duality and alternative in multiobjective optimization, Proc. Amer. Math. Soc., 64 (1977), 307–312.MATHCrossRefMathSciNetGoogle Scholar
  67. [67]
    W. A. Rödder, A generalized saddle-point theory, Eur. J. Oper. Res., 1 (1977), 55–59.MATHCrossRefGoogle Scholar
  68. [68]
    T. Scitovsky,A note on profit maximization and implications, Rev. Econ. Stud., 11 (1943), 57–60.CrossRefGoogle Scholar
  69. [69]
    C. Singh, Optimality conditions in multiobjective differentiable programming, J. Oper. Theory Appl., 53 (1987), 115–123.MATHCrossRefGoogle Scholar
  70. [70]
    D. J. Smith, W. J. Boyes, and D. E. Peseau, Size, Growth, Profits, and Executive Compensation in the Large Corporation, Macmillan, London, 1975.Google Scholar
  71. [71]
    W. Stadler,A survey of multicriteria optimization or the vector maximum problem, Part I: 1776–1960, J. Oper. Theory Appl., 29 (1979), 1–51.MATHCrossRefMathSciNetGoogle Scholar
  72. [72]
    R. E. Steuer,An interactive multiple objective linear programming procedure, TIMS Stud. Manage. Sci., 6 (1977), 225–239.Google Scholar
  73. [73]
    R. E. Steuer, L. R. Gardiner, and J. Gray, A bibliographic survey of the activities and international nature of multiple criteria decision making, J. Multicriteria Decision Anal., 5 (1996), 195–217.MATHCrossRefGoogle Scholar
  74. [74]
    G. Stigler, The development of utility theory, J. Political Econ., 58 (1950), 307–327.CrossRefGoogle Scholar
  75. [75]
    L. E. O. Svensson, Inflation forecast targeting: Implementing and monitoring inflation targets, Eur. Econ. Rev., 41 (1997), 1111–1146.CrossRefGoogle Scholar
  76. [76]
    L. E. O. Svensson, Optimal inflation targets, conservative central banks, and linear inflation contracts, Amer. Econ. Rev., 87 (1997), 98–114.Google Scholar
  77. [77]
    K. P. Schönfeld, Some duality theorems for the nonlinear vector maximum problem, Unternehmensforschung, 14 (1970), 51–63.MATHCrossRefMathSciNetGoogle Scholar
  78. [78]
    T. Tanino and Y. Sawaragi, Duality theory in multiobjective programming, J. Optim. Theory Appl., 27 (1979), 509–529.MATHCrossRefMathSciNetGoogle Scholar
  79. [79]
    H. Theil, Econometric models and welfare maximization, Weltwirtschaftliches Archiv, 72 (1954), 60–83.Google Scholar
  80. [80]
    H. Theil, Optimal Decision Rules for Government and Industry, North-Holland, Amsterdam, 1964.MATHGoogle Scholar
  81. [81]
    J.Tinbergen, On the Theory of Economic Policy, 1st printing, North-Holland,Amsterdam, 1952.Google Scholar
  82. [82]
    J. Tinbergen, Economic Policy: Principles and Design, 1st ed., North-Holland, Amsterdam, 1956.Google Scholar
  83. [83]
    J.Tinbergen, Onthe Theory of EconomicPolicy, 4th printing, North-Holland,Amsterdam, 1966.Google Scholar
  84. [84]
    F. Turnovec, Lexicografická maximalizace (Lexicographic maximization), Ekon. Mat. Obz., 3 (1983), 275–297.MathSciNetGoogle Scholar
  85. [85]
    H. Wallenius, Optimizing macroeconomic policy: A review of approaches and applications, Eur. J. Oper. Res., 10 (1982), 221–228.CrossRefGoogle Scholar
  86. [86]
    H.Wallenius, I.Wallenius, and P. Vartia, An experimental investigation of an interactive programming approach to solving macroeconomic policy problems, in K. B. Haley, ed., Operational Research ’78, North-Holland, Amsterdam, 1979, 878–894.Google Scholar
  87. [87]
    O.Williamson, The Economics of Discretionary Behaviour: Managerial Objectives in a Theory of the Firm, Prentice–Hall, Englewood Cliffs, NJ, 1964.Google Scholar
  88. [88]
    M. E.Wolf and J. Hanauer, NAMEA der Luftschadstoffe Österreich 1980–1997, Statist. Nachr., 5 (2000), 401–418.Google Scholar
  89. [89]
    M. Zeleny, Multiple Criteria Decision Making, McGraw–Hill, NewYork, 1982.MATHGoogle Scholar
  90. [90]
    S. Zionts and J.Wallenius, An interactive programming method for solving the multicriteria problem, Manage. Sci., 22 (1976), 652–663.MATHCrossRefGoogle Scholar
  91. [91]
    J. Zowe, A duality theory for a convex programming in order-complete vector lattices, J. Math. Anal. Appl., 50 (1975), 273–287.MATHCrossRefMathSciNetGoogle Scholar
  92. [92]
    J. Zowe, The saddle-point theorem of Kuhn and Tucker in ordered vector spaces, J. Math.Anal. Appl., 57 (1977), 41–55.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of EconomicsVienna University of Economics and Business AdministrationViennaAustria

Personalised recommendations