Geometric Programming

  • Mikuláš Luptáčik
Part of the Springer Optimization and Its Applications book series (SOIA, volume 36)


The open input–output model with continuous substitution between labor and capital, according to a Cobb–Douglas production function introduced in Section 1.2.8, leads to a mathematical programming problem in which the functions in the constraints are polynomials with positive coefficients (so–called posynomials).


Dual Problem Dual Variable Primal Problem Forced Constraint Geometric Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. [1]
    R. Abrams, Optimization models for regional air pollution control, in A. Charnes and W. R. Synn, eds., Mathematical Analysis of Decision Problems in Ecology, Springer-Verlag, Berlin, 1975.Google Scholar
  2. [2]
    R. G. D. Allen, Macro-Economic Theory: Mathematical Treatment, Macmillan, London, 1968.Google Scholar
  3. [3]
    K. J. Arrow, H. B. Chenery, B. S. Minhas, and R. M. Solow, Capital-labor substitution and economic efficiency, Rev. Econ. Statist., 43 (1961), 225–250.CrossRefGoogle Scholar
  4. [4]
    V. Balachandran and D. Gensch, Solving the marketing-mix problem using geometric programming, Manage. Sci., 21 (1974), 160–171.MATHCrossRefGoogle Scholar
  5. [5]
    J. R. Behrman, Sectoral elasticities of substitution between capital and labor in a developing economy: Time series analysis in the case of post-war Chile, Econometrica, 40-2 (1972), 311–326.CrossRefGoogle Scholar
  6. [6]
    Ch. S. Beightler and D. T. Phillips, Applied Geometric Programming,Wiley, NewYork, 1976.MATHGoogle Scholar
  7. [7]
    J. J. Dinkel, G. A. Kochenberger, and Y. Seppala, On the solution of regional planning models via geometric programming, Environ. Planning, 5 (1973), 397–408.CrossRefGoogle Scholar
  8. [8]
    R. J. Duffin, Cost minimization problems treated by geometric means, Oper. Res., 10 (1962), 668–675.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    R. J. Duffin, E. L. Peterson, and C. Zener, Geometric Programming: Theory and Application, Wiley, NewYork, 1967.MATHGoogle Scholar
  10. [10]
    H. A. Eiselt, G. Pederzoli, and C. L. Sandblom, Continuous Optimization Models, de Gruyter, Berlin, 1987.MATHGoogle Scholar
  11. [11]
    A. S. Kadas, An application of geometric programming to regional economics, Rep. Regional Sci. Assoc., 34 1975), 95–106.Google Scholar
  12. [12]
    M. Luptáčcik, Geometrische Programmierung und ökonomische Analyse, Mathematical Systems in Economics vol. 32,Verlag Anton Hain, Meisenheim am Glau, Germany, 1977.Google Scholar
  13. [13]
    A. P. Mastenbroek and P. Nijkamp, A spatial environmental model for an optimal allocation of investments, in P. Nijkamp, ed., Environmental Economics, Vol. 2: Methods, Nijhoff Social Sciences, Leiden, The Netherlands, 1976.Google Scholar
  14. [14]
    R. E. Miller and P. D. Blair, Input–Output Analysis: Foundations and Extensions, Prentice−Hall, Englewood Cliffs, NJ, 1985.MATHGoogle Scholar
  15. [15]
    B. Nicolleti and L. Mariani, Generalized polynomial programming: Its approach to the solution of some management science problems, Eur. J. Oper. Res., 1 (1977), 239–246.CrossRefGoogle Scholar
  16. [16]
    P. Nijkamp, Planning of Industrial Complexes by Means of Geometric Programming, University Press, Rotterdam, 1972.MATHGoogle Scholar
  17. [17]
    P. Nijkamp and J. H. P. Paelinck, An interregional model of environmental choice, Papers Regional Sci. Assoc., 31 (1977), 51–71.Google Scholar
  18. [18]
    W. Pinney and J. Modi, An application of geometric programming to the capital budgeting problem, in ORSA Meeting, San Juan, Puerto Rico, ORSA (INFORMS), Hanover, MD, 1974, 46.Google Scholar
  19. [19]
    A. Rainer, Produktionsfunktionen der österreichischen Industrie, Research Memorandum 88, Institute for Advanced Studies, Vienna, 1974.Google Scholar
  20. [20]
    M. J. Rijckaert, Engineering applications of geometric programming, in M. Avriel, M. J. Rijckaert, and D. J. Wilde, eds., Optimization and Design, Prentice−Hall, Englewood Cliffs, NJ, 1973.Google Scholar
  21. [21]
    J. K. Sengupta and J. H. Portillo-Campbell, The approach of geometric programming with economic applications, Z. Staatswirtschaft, 128 (1972), 437–455.Google Scholar
  22. [22]
    J. Schumann, Input−Output Analyse, Springer-Verlag, Berlin, 1968.MATHGoogle Scholar
  23. [23]
    C. Zener, Mathematical aid in optimizing engineering designs, Proc. Math. Acad. Sci., 47 (1961), 537–539.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    H. J. Zimmermann, Einführung in die Grundlagen des Operations Research, Verlag Moderne Industrie, Munich, 1971.Google Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of EconomicsVienna University of Economics and Business AdministrationViennaAustria

Personalised recommendations