Convex Programming

Part of the Springer Optimization and Its Applications book series (SOIA, volume 36)


The notion of convexity plays an important role in economic theory and modeling. The indifference curves generally used in the theory of consumer demand embody the assumption of a diminishing marginal rate of substitution.


Programming Problem Dual Problem Primal Problem Indifference Curve Mathematical Programming Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. [1]
    K. J. Arrow and A. C. Enthoven, Quasi-concave programming, Econometrica, 29-4 (1961), 779–800.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    K. J. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford University Press, Stanford, CA, 1958.MATHGoogle Scholar
  3. [3]
    M. L. Balinski and W. J. Baumol, The dual in nonlinear programming and its economic interpretation, Rev. Econ. Stud., 35-3 (1968), 237–256.MATHCrossRefGoogle Scholar
  4. [4]
    W. J. Baumol, Economic Theory and Operations Analysis, 3rd ed, Prentice−Hall, Englewood Cliffs, NJ, 1972.Google Scholar
  5. [5]
    L. Collatz and W. Wetterling, Optimierungsaufgaben, 2nd ed., Springer-Verlag, Berlin, 1971.MATHGoogle Scholar
  6. [6]
    G. B. Dantzig, Reminiscences about the origins of linear programming, in A. Bachem, M. Grötschel, and B. Korte, eds., Mathematical Programming: The State of the Art: Bonn 1982, Springer-Verlag, Berlin, 1983, 78−86.Google Scholar
  7. [7]
    R. Dorfman, P. A. Samuelson, and R. M. Solow, Linear Programming and Economic Analysis, McGraw−Hill, NewYork, 1958.MATHGoogle Scholar
  8. [8]
    H. A. Eiselt, G. Pederzoli, and C. L. Sandblom, Continuous Optimization Models, de Gruyter, Berlin, 1987.MATHGoogle Scholar
  9. [9]
    D. Gale, A geometric duality theorem with economic applications, Rev. Econ. Stud., 34-1 (1967), 19–24.CrossRefGoogle Scholar
  10. [10]
    M. Hamala, Nelineárne programovanie, Alfa, Bratislava, 1972.MATHGoogle Scholar
  11. [11]
    P. Huard, Dual programs, IBM J. Res. Dev., 6 (1962), 137–139.MATHCrossRefGoogle Scholar
  12. [12]
    R. Horst, On the interpretation of optimal dual solutions in convex programming, J. Oper. Res. Soc., 35 (1984), 327–335.MATHCrossRefGoogle Scholar
  13. [13]
    H.W.Kuhn and A.W. Tucker, Nonlinear programming, in J. Neyman, ed., Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 1951, 481–492.Google Scholar
  14. [14]
    H. P. Künzi, W. Krelle, and R. Randow, Nichtlineare programierung, Springer-Verlag, Berlin, 1979.Google Scholar
  15. [15]
    M. Luptáčik, Nichtlineare Programierung mit ökonomischen Anwendungen, Athenäum, Königstein, Germany, 1981.Google Scholar
  16. [16]
    W. Nicholson, Microeconomic Theory: Basic Principles and Extensions, 5th ed., Dryden Press/Harcourt−Brace−Jovanovich, NewYork, 1992.Google Scholar
  17. [17]
    H. Nikaido, Convex Structures and Economic Theory, Academic Press, NewYork, 1968.MATHGoogle Scholar
  18. [18]
    E. Silberberg and W. Suen, The Structure of Economics: A Mathematical Analysis, 3rd ed., McGraw–Hill, Singapore, 2001.Google Scholar
  19. [19]
    M. Slater, Lagrange Multipliers Revisited: Contribution to Non-Linear Programming, Cowles Commission Discussion Paper 403, University of Chicago, Chicago, 1950.Google Scholar
  20. [20]
    H. Uzawa, A note on the Menger−Wieser theory of imputation, Z. Nationalökon., 18-3 (1958).Google Scholar
  21. [21]
    Ph.Wolfe, A duality theorem for non-linear programming, Q. Appl. Math., XIX (1961), 239–244.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of EconomicsVienna University of Economics and Business AdministrationViennaAustria

Personalised recommendations