Kuhn–Tucker Conditions

  • Mikuláš Luptáčik
Part of the Springer Optimization and Its Applications book series (SOIA, volume 36)


In this chapter, necessary conditions for optimality of solution points in mathematical programming problems will be studied. Because of the orientation of this book to present optimization theory as an instrument for qualitative economic analysis, the theory to be described is not immediately concerned with computational aspects of solution techniques, which can be found in many excellent books on mathematical programming, e.g., [11, 12, 27, 23, 3].


Lagrange Function Marginal Revenue Regulatory Constraint Mathematical Programming Problem Natural Monopoly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. [1]
    K. J. Arrow, L. Hurwicz, and H. Uzawa, Constraint qualifications in maximization problems, Naval Res. Logist. Q., 8 (1961), 175–190.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    H. Averch and L. L. Johnson, Behavior of the firm under regulatory constraint, Amer. Econ. Rev., 52 (1962), 1052–1069.Google Scholar
  3. [3]
    M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming, 2nd ed., Wiley, New York, 1993.Google Scholar
  4. [4]
    W. J. Baumol, Economic Theory and Operations Analysis, 3rd ed, Prentice–Hall, Englewood Cliffs, NJ, 1972.Google Scholar
  5. [5]
    H. Bester, Theorie der Industrieökonomik, Springer-Verlag, Berlin, 2000.Google Scholar
  6. [6]
    J. Bormann and J. Finsinger, Markt und Regulierung, Verlag Vahlen, Munich, 1999.Google Scholar
  7. [7]
    D. Bös, Pricing and Price Regulation: An Economic Theory for Public Enterprises and Public Utilities, North-Holland, Amsterdam, 1994.Google Scholar
  8. [8]
    F. Dudenhöffer, The regulation of intensities and productivities: Concepts in environmental policy: Zeitschrift für die gesamte Staatswirtschaft, J. Institutional Theoret. Econ., 140 (1984), 276–287.Google Scholar
  9. [9]
    M. A. El-Hodiri and A. Takayama, Behavior of the firm under regulatory constraints: Clasifications, Amer. Econ. Rev., 63 (1973), 235–237.Google Scholar
  10. [10]
    H. A. Eiselt, G. Pederzoli, and C. L. Sandblom, Continuous Optimization Models, de Gruyter, Berlin, 1987.Google Scholar
  11. [11]
    A. Fiacco and G. P. McCormick, Nonlinear Programming, Wiley, New York, 1968.Google Scholar
  12. [12]
    R. Fletcher, Penalty functions, in A. Bachem, M. Grötschel, and B. Korte, eds., Mathematical Programming: The State of the Art: Bonn 1982, Springer-Verlag, Berlin, 1983, 87–114.Google Scholar
  13. [13]
    M. W. Frank, The Impact of Rate-of-Return Regulation on Technological Innovation, Ashgate, Aldershot, UK, 2001.Google Scholar
  14. [14]
    G. E. Helfand, Standards versus standards: The effects of different pollution restrictions, Amer. Econ. Rev., 81-3 (1991), 622–634.Google Scholar
  15. [15]
    F. John, Extremum problems with inequalities as side conditions, in K. O. Fridrichs, O. E. Neugebauer, and J. J. Stoker, eds., Studies and Essays: Courant Anniversary Volume, Wiley, New York, 1948.Google Scholar
  16. [16]
    W. Karush, Minima of Functions of Several Variables with Inequalities as Side Conditions, M. S. thesis, Department of Mathematics, University of Chicago, Chicago, 1939.Google Scholar
  17. [17]
    G. Knieps, Wettbewerbsökonomie: Regulierungstheorie, Industrieökonomie, Wettbewerbspolitik, Springer-Verlag, Berlin, 2001.Google Scholar
  18. [18]
    H.W.Kuhn and A.W. Tucker, Nonlinear programming, in J. Neyman, ed., Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 1951, 481–492.Google Scholar
  19. [19]
    J. J. Laffont and J. Tirole, A Theory of Incentives in Procurement and Regulation, MIT Press, Cambridge, MA, 2000.Google Scholar
  20. [20]
    S. C. Littlechild, Peak-load pricing of telephone calls, Bell J. Econ. Manage. Sci., 1- 2 (1970), 191–210.CrossRefGoogle Scholar
  21. [21]
    S. C. Littlechild, Regulation of British Telecommunications’ Profitability, Her Majesty’s Stationery Office, London, 1983.Google Scholar
  22. [22]
    C. Liston, Price-cap versus rate-of-return regulation, J. Regul. Econ., 5 (1993), 25–48.CrossRefGoogle Scholar
  23. [23]
    D. L. Luenberger, Linear and Nonlinear Programming, 1st and 2nd eds., Addison– Wesley, Reading, MA, 1973, 1984.Google Scholar
  24. [24]
    M. Luptáčik, Nichtlineare Programierung mit ökonomischen Anwendungen, Athenäum, Königstein, Germany, 1981.Google Scholar
  25. [25]
    M. Luptáčik, Price-Cap-Regulierung und Benchmarking der österreichischen Netzbetrieber (Price-cap regulation and benchmarking of the Austrian electricity grid companies), in T. Kostal, M. Leibrecht, and A. Pasterniak, eds., Organisation und Funktionen des Staates im Wandel: Festschrift für Gabriel Obermann, Facultas.wuv Universitätsverlag, Vienna, 2008, 203–216.Google Scholar
  26. [26]
    O. L. Mangasarian, Nonlinear Programming, McGraw–Hill, New York, 1969.Google Scholar
  27. [27]
    G. P. McCormick, Nonlinear Programming: Theory, Algorithms, and Applications, Wiley, New York, 1983.Google Scholar
  28. [28]
    W. Nicholson, Microeconomic Theory: Basic Principles and Extensions, 5th ed., Dryden Press/Harcourt–Brace–Jovanovich, New York, 1992.Google Scholar
  29. [29]
    J. Niehans, The Theory of Money, Johns Hopkins University Press, Baltimore, 1978.Google Scholar
  30. [30]
    H. Nikaido, Convex Structure and Economic Theory, Academic Press, New York, 1968.Google Scholar
  31. [31]
    H. Siebert, Economics of the Environment, Lexington Books, New York, 1981.Google Scholar
  32. [32]
    H. Siebert, Some open questions, in H. Siebert, ed., Umweltallokation im Raum, Lang, Frankfurt am Main, Germany, 1982, 1–30.Google Scholar
  33. [33]
    E. Silberberg and W. Suen, The Structure of Economics: A Mathematical Analysis, 3rd ed., McGraw–Hill, New York, 2001.Google Scholar
  34. [34]
    V. K. Smith, The implications of regulation for induced technical change, Bell J. Econ. Manage. Sci., 5-2 (1974), 623–636.CrossRefGoogle Scholar
  35. [35]
    P. O. Steiner, Peak loads and efficient pricing, Q. J. Econ., 54 (1964), 64–76.Google Scholar
  36. [36]
    A. Takayama, Behavior of the firm under regulatory constraint, Amer. Econ. Rev., 59 (1969), 255–260.Google Scholar
  37. [37]
    A. Takayama, Mathematical Economics, Cambridge University Press, Cambridge, UK, 1985.Google Scholar
  38. [38]
    O. E. Williamson, Peak load pricing and optimal capacity under indivisibility constraints, Amer. Econ. Rev., 56 (1966), 810–827.Google Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.Department of EconomicsVienna University of Economics and Business AdministrationViennaAustria

Personalised recommendations