Skip to main content

Biomechanics and Pathophysiology of Concussion

  • Chapter
  • First Online:
Pediatric and Adolescent Concussion
  • 2299 Accesses

Abstract

Major progress in the basic and clinical science of concussion has been realized over the past decade. Innovative new paradigms for brain injury research have advanced our scientific understanding of the biomechanics, true natural history of clinical recovery, and window of cerebral vulnerability associated with concussion. Modern technologies have provided a translational bridge from animal brain injury models to direct study of the characteristics and pathophysiology of concussion in humans. In the overwhelming majority of cases, clinical recovery occurs over a period of several days to weeks after concussion, without persistent symptoms or functional impairments. Young, developing brains may be at heightened risk of serious or catastrophic outcomes following concussion, which are extremely rare. The collective body of research in recent years ultimately provides a more evidence-driven approach to clinical management of concussion in all settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • (2006) Personal communication with K. Guskiewicz on the biomechanics of sport-related MTBI. Chapel Hill, NC.

    Google Scholar 

  • Aldrich, E. F., Eisenberg, H. M., et al. (1992). Diffuse brain swelling in severely head-injured children. A report from the NIH Traumatic Coma Data Bank. Journal of Neurosurgery, 76(3), 450–454.

    Article  PubMed  Google Scholar 

  • Arfanakis, K., Haughton, V. M., et al. (2002). Diffusion tensor MR imaging in diffuse axonal injury. American Journal of Neuroradiology, 23(5), 794–802.

    PubMed  Google Scholar 

  • Aubry, M., Cantu, R., et al. (2002). Summary and agreement statement of the 1st International Symposium on Concussion in Sport Vienna 2001. Clinical Journal of Sport Medicine, 12(1), 6–11.

    Article  PubMed  Google Scholar 

  • Bagley, L. J., McGowan, J. C., et al. (2000). Magnetization transfer imaging of traumatic brain injury. Journal of Magnetic Resonance Imaging, 11(1), 1–8.

    Article  PubMed  Google Scholar 

  • Barth, J. T., Freeman, J. R., et al. (2001). Acceleration-deceleration sport-related concussion: the gravity of it all. Journal of Athletic Training, 36(3), 253–256.

    PubMed  Google Scholar 

  • Bauer, R., & Fritz, H. (2004). Pathophysiology of traumatic injury in the developing brain: an introduction and short update. Experimental and Toxicologic Pathology, 56(1–2), 65–73.

    Article  PubMed  Google Scholar 

  • Bazarian, J. J., Blyth, B., et al. (2006). Bench to bedside: evidence for brain injury after concussion-looking beyond the computed tomography scan. Academic Emergency Medicine, 13(2), 199–214.

    PubMed  Google Scholar 

  • Begaz, T., Kyriacou, D. N., et al. (2006). Serum biochemical markers for post-concussion syndrome in patients with mild traumatic brain injury. Journal of Neurotrauma, 23(8), 1201–1210.

    Article  PubMed  Google Scholar 

  • Belanger, H. G., Vanderploeg, R. D., et al. (2007). Recent neuroimaging techniques in mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(1), 5–20.

    Article  PubMed  Google Scholar 

  • Bell, D. R., Mihalik, J. P., et al. (2006). An analysis of head impacts sustained during a complete season by Division I collegiate football players. Journal of Athletic Training, 41(2), S40.

    Google Scholar 

  • Bergsneider, M., Hovda, D. A., et al. (2000). Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. Journal of Neurotrauma, 17(5), 389–401.

    Article  PubMed  Google Scholar 

  • Biberthaler, P., Mussack, T., et al. (2000). Influence of alcohol exposure on S-100b serum levels. Acta Neurochirurgica. Supplementum, 76, 177–179.

    Google Scholar 

  • Biberthaler, P., Mussack, T., et al. (2001a). Elevated serum levels of S-100B reflect the extent of brain injury in alcohol intoxicated patients after mild head trauma. Shock, 16(2), 97–101.

    Article  PubMed  Google Scholar 

  • Biberthaler, P., Mussack, T., et al. (2001b). Evaluation of S-100b as a specific marker for neuronal damage due to minor head trauma. World Journal of Surgery, 25(1), 93–97.

    Article  PubMed  Google Scholar 

  • Bigler, E. D. (2004). Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. Journal of the International Neuropsychological Society, 10(5), 794–806.

    Article  PubMed  Google Scholar 

  • Bigler, E. D. (2005). Structural neuroimaging in traumatic brain injury. In J. M. M. T. Sliver & S. C. Yudofsky (Eds.), Textbook of traumatic brain injury. Washington, DC: American Psychiatric Press.

    Google Scholar 

  • Blumbergs, P. C., Scott, G., et al. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. The Lancet, 344(8929), 1055–1056.

    Article  Google Scholar 

  • Blumbergs, P. C., Scott, G., et al. (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12(4), 565–572.

    Article  PubMed  Google Scholar 

  • Brolinson, P. G., Manoogian, S., et al. (2006). Analysis of linear head accelerations from collegiate football impacts. Current Sports Medicine Reports, 5(1), 23–28.

    PubMed  Google Scholar 

  • Cantu, R. C. (1998). Second-impact syndrome. Clinics in Sports Medicine, 17(1), 37–44.

    Article  PubMed  Google Scholar 

  • Cassidy, J. D., Carroll, L. J., et al. (2004). Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Journal of Rehabilitation Medicine, 43(suppl), 28–60.

    Article  PubMed  Google Scholar 

  • Chen, J. K., Johnston, K. M., et al. (2004). Functional abnormalities in symptomatic concussed athletes: an fMRI study. NeuroImage, 22(1), 68–82.

    Article  PubMed  Google Scholar 

  • Chen, J. K., Johnston, K. M., et al. (2008). Recovery from mild head injury in sports: evidence from serial functional magnetic resonance imaging studies in male athletes. Clinical Journal of Sport Medicine, 18(3), 241–247.

    Article  PubMed  Google Scholar 

  • Cortez, S. C., McIntosh, T. K., et al. (1989). Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Research, 482(2), 271–282.

    Article  PubMed  Google Scholar 

  • D’Ambrosio, R., Maris, D. O., et al. (1998). Selective loss of hippocampal long-term potentiation, but not depression, following fluid percussion injury. Brain Research, 786(1–2), 64–79.

    Article  PubMed  Google Scholar 

  • de Kruijk, J. R., Leffers, P., et al. (2001). S-100B and neuron-specific enolase in serum of mild traumatic brain injury patients. A comparison with health controls. Acta Neurologica Scandinavica, 103(3), 175–179.

    Article  PubMed  Google Scholar 

  • Farkas, O., & Povlishock, J. T. (2007). Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage. Progress in Brain Research, 161, 43–59.

    Article  PubMed  Google Scholar 

  • Fineman, I., Hovda, D. A., et al. (1993). Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Research, 624(1–2), 94–102.

    Article  PubMed  Google Scholar 

  • Gardiner, M., Smith, M. L., et al. (1982). Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism. Journal of Cerebral Blood Flow and Metabolism, 2(4), 429–438.

    Article  PubMed  Google Scholar 

  • Gefen, A., Gefen, N., et al. (2003). Age-dependent changes in material properties of the brain and braincase of the rat. Journal of Neurotrauma, 20(11), 1163–1177.

    Article  PubMed  Google Scholar 

  • Gennarelli, T. A., & Graham, D. I. (1998). Neuropathology of the head injuries. Seminars in Clinical Neuropsychiatry, 3(3), 160–175.

    PubMed  Google Scholar 

  • Giza, C. C., & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36(3), 228–235.

    PubMed  Google Scholar 

  • Giza, C. C., & Hovda, D. A. (2004). The pathophysiology of traumatic brain injury. In M. W. Collins (Ed.), Traumatic brain injury in sports (pp. 45–70). Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Goldsmith, W., & Plunkett, J. (2004). A biomechanical analysis of the causes of traumatic brain injury in infants and children. The American Journal of Forensic Medicine and Pathology, 25(2), 89–100.

    Article  PubMed  Google Scholar 

  • Goodman, Y., & Mattson, M. P. (1994). Staurosporine and K-252 compounds protect hippocampal neurons against amyloid beta-peptide toxicity and oxidative injury. Brain Research, 650(1), 170–174.

    Article  PubMed  Google Scholar 

  • Gorman, L. K., Fu, K., et al. (1996). Effects of traumatic brain injury on the cholinergic system in the rat. Journal of Neurotrauma, 13(8), 457–463.

    Article  PubMed  Google Scholar 

  • Griesbach, G. S., Gomez-Pinilla, F., et al. (2004a). The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Brain Research, 1016(2), 154–162.

    Article  PubMed  Google Scholar 

  • Griesbach, G. S., Gomez-Pinilla, F., et al. (2007). Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. Journal of Neurotrauma, 24(7), 1161–1171.

    Article  PubMed  Google Scholar 

  • Griesbach, G. S., Hovda, D. A., et al. (2004b). Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience, 125(1), 129–139.

    Article  PubMed  Google Scholar 

  • Griesbach, G. S., Hovda, D. A., et al. (2008). Voluntary exercise or amphetamine treatment, but not the combination, increases hippocampal brain-derived neurotrophic factor and synapsin I following cortical contusion injury in rats. Neuroscience, 154(2), 530–540.

    Article  PubMed  Google Scholar 

  • Guskiewicz, K., Mihalik, J. P., et al. (2005). Recurrent concussion in a collegiate football player equipped with the Head Impact Telemetry System. Journal of Athletic Training, 40(2), S81.

    Google Scholar 

  • Hammeke, T., McCrea, M., et al. (2004). Functional magnetic resonance imaging after acute sports concussion. Journal of the International Neuropsychological Society, 18, 168.

    Google Scholar 

  • Herrmann, M., Curio, N., et al. (2001). Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short and long term neuropsychological outcome after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 70(1), 95–100.

    Article  PubMed  Google Scholar 

  • Hovda, D. A., Yoshino, A., et al. (1991). Diffuse prolonged depression of cerebral oxidative metabolism following concussive brain injury in the rat: a cytochrome oxidase histochemistry study. Brain Research, 567(1), 1–10.

    Article  PubMed  Google Scholar 

  • Ingebrigtsen, T., & Romner, B. (1996). Serial S-100 protein serum measurements related to early magnetic resonance imaging after minor head injury. Case report. Journal of Neurosurgery, 85(5), 945–948.

    Article  PubMed  Google Scholar 

  • Ingebrigtsen, T., & Romner, B. (2002). Biochemical serum markers of traumatic brain injury. The Journal of Trauma, 52(4), 798–808.

    Article  PubMed  Google Scholar 

  • Ingebrigtsen, T., & Romner, B. (2003). Biochemical serum markers for brain damage: a short review with emphasis on clinical utility in mild head injury. Restorative Neurology and Neuroscience, 21(3–4), 171–176.

    PubMed  Google Scholar 

  • Inglese, M., Benedetti, B., et al. (2005). The relation between MRI measures of inflammation and neurodegeneration in multiple sclerosis. Journal of Neurological Sciences, 233(1–2), 15–19.

    Article  Google Scholar 

  • Iverson, G. L. (2005). Outcome from mild traumatic brain injury. Current Opinion in Psychiatry, 18(3), 301–317.

    Article  PubMed  Google Scholar 

  • Iverson, G. L., Lange, R. T., et al. (2006). Mild TBI. In R. D. Zafonte (Ed.), Brain injury medicine: principles and practice (pp. 333–371). New York: Demos Medical.

    Google Scholar 

  • Jantzen, K. J., Anderson, B., et al. (2004). A prospective functional MR imaging study of mild traumatic brain injury in college football players. American Journal of Neuroradiology, 25(5), 738–745.

    PubMed  Google Scholar 

  • Kalimo, H., Rehncrona, S., et al. (1981a). The role of lactic acidosis in the ischemic nerve cell injury. Acta Neuropathologica Supplementum, 7, 20–22.

    Article  PubMed  Google Scholar 

  • Kalimo, H., Rehncrona, S., et al. (1981b). Brain lactic acidosis and ischemic cell damage: 2 Histopathology. Journal of Cerebral Blood Flow and Metabolism, 1(3), 313–327.

    Article  PubMed  Google Scholar 

  • Kay, T., Harrington, D. E., et al. (1993). Definition of mild traumatic brain injury: Report from the Mild Traumatic Brain Injury Committee of the Head Injury Interdisciplinary Special Interest Group of the American Congress of Rehabilitation Medicine. The Journal of Head Trauma Rehabilitation, 8(3), 86–87.

    Article  Google Scholar 

  • Kirkwood, M. W., Yeates, K. O., et al. (2006). Pediatric sport-related concussion: a review of the clinical management of an oft-neglected population. Pediatrics, 117(4), 1359–1371.

    Article  PubMed  Google Scholar 

  • Kraus, M. F., Susmaras, T., et al. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(Pt 10), 2508–2519.

    Article  PubMed  Google Scholar 

  • Levine, B., Fujiwara, E., et al. (2006). In vivo characterization of traumatic brain injury neuropathology with structural and functional neuroimaging. Journal of Neurotrauma, 23(10), 1396–1411.

    Article  PubMed  Google Scholar 

  • Lovell, M. R., Pardini, J. E., et al. (2007). Functional brain abnormalities are related to clinical recovery and time to return to play in athletes. Neurosurgery, 61(2), 352–359. discussion 359–360.

    Article  PubMed  Google Scholar 

  • Majerske, C. W., Mihalik, J. P., et al. (2008). Concussion in sports: postconcussive activity levels, symptoms, and neurocognitive performance. Journal of Athletic Training, 43(3), 265–274.

    Article  PubMed  Google Scholar 

  • McAllister, T. W., Flashman, L. A., et al. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23(10), 1450–1467.

    Article  PubMed  Google Scholar 

  • McAllister, T. W., Saykin, A. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.

    PubMed  Google Scholar 

  • McAllister, T. W., Sparling, M. B., et al. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14(5), 1004–1012.

    Article  PubMed  Google Scholar 

  • McCaffrey, M. A., Mihalik, J. P., et al. (2006). Balance and neurocognitive performance in collegiate football players following head impacts at varying magnitudes. Journal of Athletic Training, 41(2), S41.

    Google Scholar 

  • McCrea, M., Iverson, G. L., et al. (2009). An integrated review of recovery after mild traumatic brain injury (MTBI): Implications for clinical management. The Clinical Neuropsychologist, 23(8), 1368–1390.

    Article  PubMed  Google Scholar 

  • McCrory, P. (2001). Does second impact syndrome exist? Clinical Journal of Sport Medicine, 11(3), 144–149.

    Article  PubMed  Google Scholar 

  • McCrory, P., Johnston, K. M., et al. (2001). Evidence-based review of sport-related concussion: basic science. Clinical Journal of Sport Medicine, 11(3), 160–165.

    Article  PubMed  Google Scholar 

  • McCrory, P., Johnston, K., et al. (2005). Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. British Journal of Sports Medicine, 39(4), 196–204.

    PubMed  Google Scholar 

  • McCrory, P., Meeuwisse, W., et al. (2009). Consensus Statement on Concussion in Sport: the 3 rd International Conference on Concussion in Sport held in Zurich, November 2008. British Journal of Sports Medicine, 43(Suppl 1), i76–i90.

    Article  PubMed  Google Scholar 

  • McGowan, J. C., Yang, J. H., et al. (2000). Magnetization transfer imaging in the detection of injury associated with mild head trauma. American Journal of Neuroradiology, 21(5), 875–880.

    PubMed  Google Scholar 

  • McIntosh, T. K. (1993). Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. Journal of Neurotrauma, 10(3), 215–261.

    Article  PubMed  Google Scholar 

  • Mihalik, J. P., Guskiewicz, K., et al. (2005). Measurement of head impacts in Division I collegiate football players. Journal of Athletic Training, 40(2), S82.

    Google Scholar 

  • Mihalik, J. P., Guskiewicz, K., et al. (2006). Evaluation of impact biomechanics: the association between impact magnitudes and locations in collegiate football players. Journal of Athletic Training, 41(2), S40–S41.

    Google Scholar 

  • Mussack, T., Biberthaler, P., et al. (2002a). Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. Shock, 18(5), 395–400.

    Article  PubMed  Google Scholar 

  • Mussack, T., Biberthaler, P., et al. (2002b). Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Critical Care Medicine, 30(12), 2669–2674.

    Article  PubMed  Google Scholar 

  • Myers, R. E. (1979). A unitary theory of causation of anoxic and hypoxic brain pathology. Advances in Neurology, 26, 195–213.

    PubMed  Google Scholar 

  • Naunheim, R. S., Standeven, J., et al. (2000). Comparison of impact data in hockey, football, and soccer. The Journal of Trauma, 48(5), 938–941.

    Article  PubMed  Google Scholar 

  • Newman, J. A., Barr, C., et al. (2000). A new biomechanical assessment of mild traumatic brain injury, Part 2: Results and conclusions. Montpellier, France: Proceedings of International Research Conference on the Biomechanics of Impacts.

    Google Scholar 

  • Newman, J. A., Beusenberg, M., et al. (1999). A new biomechanical assessment of mild traumatic brain injury, Part 1: Methodology. Barcelona, Spain: Proceedings of International Research Conference on the Biomechanics of Impacts.

    Google Scholar 

  • Niogi, S. N., Mukherjee, P., et al. (2008a). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3 T diffusion tensor imaging study of mild traumatic brain injury. American Journal of Neuroradiology, 29(5), 967–973.

    Article  PubMed  Google Scholar 

  • Niogi, S. N., Mukherjee, P., et al. (2008b). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain, 131(Pt 12), 3209–3221.

    Article  PubMed  Google Scholar 

  • Ommaya, A. K., & Gennarelli, T. A. (1974). Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain, 97(4), 633–654.

    Article  PubMed  Google Scholar 

  • Ommaya, A. K., Gennarelli, T. A., et al. (1973). Traumatic unconsciousness: mechanisms of brain injury in violent shaking of the head. Los Angeles, CA: Proceedings of the American Association of Neurological Surgeons.

    Google Scholar 

  • Ommaya, A. K., Goldsmith, W., et al. (2002). Biomechanics and neuropathology of adult and paediatric head injury. British Journal of Neurosurgery, 16(3), 220–242.

    Article  PubMed  Google Scholar 

  • Oppenheimer, D. R. (1968). Microscopic lesions in the brain following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 31(4), 299–306.

    Article  PubMed  Google Scholar 

  • Osteen, C. L., Moore, A. H., et al. (2001). Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. Journal of Neurotrauma, 18(2), 141–162.

    Article  PubMed  Google Scholar 

  • Pellman, E. J. (2003). Background on the National Football League’s research on concussion in professional football. Neurosurgery, 53(4), 797–798.

    PubMed  Google Scholar 

  • Pellman, E. J., Viano, D. C., et al. (2003a). Concussion in professional football: location and direction of helmet impacts-Part 2. Neurosurgery, 53(6), 1328–1340. discussion 1340–1341.

    Article  PubMed  Google Scholar 

  • Pellman, E. J., Viano, D. C., et al. (2003b). Concussion in professional football: reconstruction of game impacts and injuries. Neurosurgery, 53(4), 799–812. discussion 812–814.

    PubMed  Google Scholar 

  • Prins, M. L., & Hovda, D. A. (2003). Developing experimental models to address traumatic brain injury in children. Journal of Neurotrauma, 20(2), 123–137.

    Article  PubMed  Google Scholar 

  • Raghupathi, R. (2004). Cell death mechanisms following traumatic brain injury. Brain Pathology, 14(2), 215–222.

    Article  PubMed  Google Scholar 

  • Sanders, M. J., Sick, T. J., et al. (2000). Chronic failure in the maintenance of long-term potentiation following fluid percussion injury in the rat. Brain Research, 861(1), 69–76.

    Article  PubMed  Google Scholar 

  • Schmidt, R. H., & Grady, M. S. (1995). Loss of forebrain cholinergic neurons following fluid-percussion injury: implications for cognitive impairment in closed head injury. Journal of Neurosurgery, 83(3), 496–502.

    Article  PubMed  Google Scholar 

  • Shaw, N. A. (2002). The neurophysiology of concussion. Progress in Neurobiology, 67(4), 281–344.

    Article  PubMed  Google Scholar 

  • Sick, T. J., Perez-Pinzon, M. A., et al. (1998). Impaired expression of long-term potentiation in hippocampal slices 4 and 48 h following mild fluid-percussion brain injury in vivo. Brain Research, 785(2), 287–292.

    Article  PubMed  Google Scholar 

  • Siemkowicz, E., & Hansen, A. J. (1978). Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurologica Scandinavica, 58(1), 1–8.

    Article  PubMed  Google Scholar 

  • Thibault, K. L., & Margulies, S. S. (1998). Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. Journal of Biomechanics, 31(12), 1119–1126.

    Article  PubMed  Google Scholar 

  • Ucar, T., Tanriover, G., et al. (2006). Modified experimental mild traumatic brain injury model. The Journal of Trauma, 60(3), 558–565.

    Article  PubMed  Google Scholar 

  • Vink, R., Faden, A. I., et al. (1988). Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy. Journal of Neurotrauma, 5(4), 315–330.

    Article  PubMed  Google Scholar 

  • Vink, R., & McIntosh, T. K. (1990). Pharmacological and physiological effects of magnesium on experimental traumatic brain injury. Magnesium Research, 3(3), 163–169.

    PubMed  Google Scholar 

  • Vink, R., McIntosh, T. K., et al. (1987a). Decrease in total and free magnesium concentration following traumatic brain injury in rats. Biochemical and Biophysical Research Communications, 149(2), 594–599.

    Article  PubMed  Google Scholar 

  • Vink, R., McIntosh, T. K., et al. (1987b). Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study. Journal of Cerebral Blood Flow and Metabolism, 7(5), 563–571.

    Article  PubMed  Google Scholar 

  • Voller, B., Auff, E., et al. (2001). To do or not to do? Magnetic resonance imaging in mild traumatic brain injury. Brain Injury, 15(2), 107–115.

    Article  PubMed  Google Scholar 

  • Yarnell, P. R., & Lynch, S. (1970). Retrograde memory immediately after concussion. The Lancet, 1 (7652), 863–864.

    Article  Google Scholar 

  • Yarnell, P. R., & Lynch, S. (1973). The ‘ding’: amnestic states in football trauma. Neurology, 23(2), 196–197.

    PubMed  Google Scholar 

  • Yoshino, A., Hovda, D. A., et al. (1991). Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Research, 561(1), 106–119.

    Article  PubMed  Google Scholar 

  • Zhang, L., Yang, K. H., et al. (2004). A proposed injury threshold for mild traumatic brain injury. Journal of Biomechanical Engineering, 126(2), 226–236.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McCrea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

McCrea, M., Powell, M.R. (2012). Biomechanics and Pathophysiology of Concussion. In: Apps, J., Walter, K. (eds) Pediatric and Adolescent Concussion. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89545-1_4

Download citation

Publish with us

Policies and ethics