The theory of piezoelectricity is based on a quasistatic approximation [1]. As a result, in this theory, although the mechanical equations are dynamic, the electromagnetic equations are static, and the electric field and the magnetic field are not dynamically coupled. Therefore, the theory of piezoelectricity does not describe the wave behavior of electromagnetic fields. For many applications in piezoelectric acoustic wave devices, the quasistatic theory is sufficient; but there are situations in which full electromagnetic coupling needs to be considered. When electromagnetic waves are involved, the complete set of Maxwell equations needs to be used, coupled to the mechanical equations of motion. Such a fully dynamic theory has been called piezoelectromagnetism by some researchers. Solutions for the propagation of plane waves in an unbounded piezoelectromagnetic medium were obtained in [2]. In addition to waves that are essentially acoustic, there are also waves that are essentially electromagnetic. These two groups of modes interact through piezoelectric coupling. Effects of viscosity and conductivity on plane waves were analyzed in [3].


Dispersion Relation Wave Speed Love Wave Generalize Variational Principle Symmetric Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson DF (1979) Electric, Optic and Acoustic Interactions in Crystals. Wiley, New YorkGoogle Scholar
  2. 2.
    Kyame JJ (1949) Wave propagation in piezoelectric crystals. J Acoust Soc Am 21: 159–167CrossRefGoogle Scholar
  3. 3.
    Kyame JJ (1953) Conductivity and viscosity effects on wave propagation in piezoelectric crystals.J Acoust Soc Am 26: 990–993CrossRefGoogle Scholar
  4. 4.
    Pailloux PMH (1958) Piezoelectricite calcul des vitesses de propagation. Le Journal de Physique et le Radium 19: 523–526MATHCrossRefGoogle Scholar
  5. 5.
    Hruska H (1966) The rate of propagation of ultrasonic waves in ADP and in Voigt’s theory. Czech J Phys B 16: 446–453CrossRefGoogle Scholar
  6. 6.
    Hruska H (1966) Relation between the general and the simplified condition for the velocity of propagation of ultrasonic waves in a piezoelectric medium. Czech J Phys B 18: 214–221Google Scholar
  7. 7.
    Tseng CC, White PM (1967) Propagation of piezoelectric and elastic surface waves on the basal plane of hexagonal piezoelectric crystals. J Appl Phys 38: 4274–4280CrossRefGoogle Scholar
  8. 8.
    Tseng CC (1967) Elastic surface waves on free surface and metallized surface of CdS, ZnO, and PZT-4. J Appl Phys 38: 4281–4284CrossRefGoogle Scholar
  9. 9.
    Spaight RN, Koerber GG (1971) Piezoelectric surface waves on LiNbO3. IEEE Trans Son Ultrason 18: 237–238Google Scholar
  10. 10.
    Moon FC (1970) Scattering of waves by a cylindrical piezoelectric inclusion. J Acoust Soc Am 48: 253–262CrossRefGoogle Scholar
  11. 11.
    Sedov A, Schmerr LW Jr (1986) Some exact solutions for the propagation of transient electroacoustic waves I: piezoelectric half-space. Int J Engng Sci 24: 557–568MATHCrossRefGoogle Scholar
  12. 12.
    Schmerr LW Jr, Sedov A (1986) Some exact solutions for the propagation of transient electroacoustic waves II: plane interface between two piezoelectric media. Int J Engng Sci 24: 921–932MATHCrossRefGoogle Scholar
  13. 13.
    Morishita K, Kumagai N (1978) Systematic derivation of variational expressions for electromagnetic and/or acoustic waves. IEEE Trans Microwave Theor Technol 26: 684–689CrossRefMathSciNetGoogle Scholar
  14. 14.
    Mindlin RD (1978) A variational principle for the equations of piezoelectromagnetism in a compound medium. In: Complex Variable Analysis and Its Applications (I. N. Vekua 70th Birthday Volume). Academy of Sciences USSR, Nauka, MoscowGoogle Scholar
  15. 15.
    Lee PCY (1991) A variational principle for the equations of piezoelectromagnetism in elastic dielectric crystals. J Appl Phys 69: 7470–7473CrossRefGoogle Scholar
  16. 16.
    Yang JS (1991) A generalized variational principle for piezoelectromagnetism in an elastic medium. Arch Mech 43: 795–798MATHGoogle Scholar
  17. 17.
    Yang JS (1993) Variational principles for the vibration of an elastic dielectric. Arch Mech 45: 279–284MATHGoogle Scholar
  18. 18.
    Yang JS, Wu XY (1995) The vibration of an elastic dielectric with piezoelectromagnetism. Quart Appl Math 53: 753–760MATHMathSciNetGoogle Scholar
  19. 19.
    Altay GA, Dökmeci MC (2004) Fundamental equations of certain electromagneticacoustic discontinuous fields in variational form. Continuum Mech Thermodyn 16: 53–71MATHCrossRefGoogle Scholar
  20. 20.
    Altay GA, Dökmeci MC (2005) Variational principles and vibrations of a functionally graded plate. Computer Struct 83: 1340–1354CrossRefGoogle Scholar
  21. 21.
    Yang JS, Zhou HG (2005) Two-dimensional equations for electromagnetic waves in multi-layered thin films. Int J Solids Struct 42: 6662–6679MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yang JS (2004) A moving dislocation in piezoelectromagnetic ceramics.Acta Meach 172: 123–129MATHGoogle Scholar
  23. 23.
    Wang X, Zhong Z (2002), A moving piezoelectric screw dislocation. Mech Res Commun 29: 425–429MATHCrossRefGoogle Scholar
  24. 24.
    Yang JS (2004) Effects of electromagnetic coupling on a moving crack in polarized ceramics. Int J. of Fract 126: L83–L88MATHCrossRefGoogle Scholar
  25. 25.
    Li XF, Yang JS (2005) Electromagnetoelastic behavior induced by a crack under antiplane mechanical and inplane electric impacts. Int J Fract 132: 49–65CrossRefGoogle Scholar
  26. 26.
    Li S (1996) The electromagneto-acoustic surface wave in a piezoelectric medium: the Bleustein-Gulyaev mode. J Appl Phys 80: 5264–5269CrossRefGoogle Scholar
  27. 27.
    Yang JS (2000) Bleustein-Gulyaev waves in piezoelectromagnetic materials. Int J Appl Electromag and Mech 12: 235–240Google Scholar
  28. 28.
    Bleustein JL (1968) A new surface wave in piezoelectric materials. Appl Phys Lett 13: 412–413CrossRefGoogle Scholar
  29. 29.
    Gulyaev YuV (1969) Electroacoustic surface waves in solids. Sov Phys JETP Letters 9: 37–38Google Scholar
  30. 30.
    Yang JS, Zhou HG (2005) An interface wave in piezoelectromagnetic materials. Int J Appl Electromag and Mech 21: 63–68Google Scholar
  31. [31] To AC, Glaser SD (2005) On the quasi-static assumption in modeling shear horizontal (SH) waves in a transversely isotropic (6mm) medium. albertto/piezo.pdf. Accessed 2005
  32. 32.
    Yang JS (2004) Piezoelectromagnetic waves in a ceramic plate. IEEE Trans Ultrason Ferroelect Freq Contr 51: 1035–1039CrossRefGoogle Scholar
  33. 33.
    Yang JS (2004) Love waves in piezoelectromagnetic materials. Acta Mech 168: 111–117MATHCrossRefGoogle Scholar
  34. 34.
    Yang JS (2006) Acoustic gap waves in piezoelectromagnetic materials. Math Mech Solids 11: 451–458MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Yang JS, Guo SH (2006): Piezoelectromagnetic waves guided by the surface of a ceramic cylinder. Acta Mech 181: 199–205MATHCrossRefGoogle Scholar
  36. 36.
    Iadonisi G, Perroni CA, Cantele G et al (2008) General solutions to the equations of piezoelectromagnetism: infinite medium and slab. J Appl Phys 63: 064109CrossRefGoogle Scholar
  37. 37.
    Jiang SN, Jiang Q, Li XF et al (2006) Piezoelectromagnetic waves in a ceramic plate between two ceramic half-spaces. Int J Solids Struct 43: 5799–5810MATHCrossRefGoogle Scholar
  38. 38.
    Yang JS, Chen XH, Soh AK (2007) Acoustic leakage in electromagnetic waveguides made from piezoelectric materials. J Appl Phys 101: 066105CrossRefGoogle Scholar
  39. 39.
    Mindlin RD (1972) Electromagnetic radiation from a vibrating quartz plate. Int J Solids Struct 9: 697–702CrossRefGoogle Scholar
  40. 40.
    Lee PCY (1989) Electromagnetic radiation from an AT-cut quartz plate under lateralfield excitation. J Appl Phys 65: 1395–1399CrossRefGoogle Scholar
  41. 41.
    Lee PCY, Kim YG, Prevost JH (1990) Electromagnetic radiation from doubly rotated piezoelectric crystal plates vibrating at thickness frequencies. J Appl Phys 67: 6633–6642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jiashi Yang
    • 1
  1. 1.Department of Engineering Mechanics University of NebraskaLincolnUSA

Personalised recommendations