In the development of smart material systems and structures, piezoelectric ceramics are extensively used in sensors and actuators. The main weakness of piezoelectric ceramics is their brittleness. Stress and electric field concentrations near the tips of defects or electrodes can also induce crack initiation and propagation, which will lead to the failure of these piezoelectric ceramics. Therefore, the piezoelectric fracture and crack problems have received considerable attention due to practical importance. In the theoretical studies of the piezoelectric fracture and crack problems, there are two commonly used electrical boundary conditions across the crack face, the permeable crack model [1,2], and the impermeable crack model [3–5]. Recently, the open piezoelectric crack model [6] was used in [7–9], and the effect of electric fields on the fracture mechanics parameters such as energy release rate was discussed.


Energy Release Rate Piezoelectric Material Electric Displacement Piezoelectric Ceramic Crack Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parton, V. Z.: Fracture mechanics of piezoelectric materials. Acta Astro. 3, 671–683 (1976)MATHCrossRefGoogle Scholar
  2. 2.
    Shindo, Y., Ozawa, E., Nowacki, J. P.: Singular stress and electric fields of a cracked piezoelectric strip. Int. J. Appl. Electromagn. Mater. 1, 77–87 (1990)Google Scholar
  3. 3.
    Deeg, W. F. J.: The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D. thesis, Stanford University (1980)Google Scholar
  4. 4.
    Pak, Y. E.: Crack extension force in a piezoelectric material. ASME J. Appl. Mech. 57, 647–653 (1990)MATHGoogle Scholar
  5. 5.
    Sosa, H. A.: On the fracture mechanics of piezoelectric solids. Int. J. Solids Struct. 29, 2613–2622 (1992)MATHCrossRefGoogle Scholar
  6. 6.
    Hao, T.-H., Shen, Z.-Y.: A new electric boundary condition of electric fracture mechanics and its applications. Eng. Fract. Mech. 47, 793–802 (1994)CrossRefGoogle Scholar
  7. 7.
    Xu, X.-L., Rajapakse, R. K. N. D.: On a plane crack in piezoelectric solids. Int. J. Solids Struct. 38, 7643–7658 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Landis, C. M.: Energetically consistent boundary conditions for electromechanical fracture. Int. J. Solids Struct. 41, 6291–6315 (2004)MATHCrossRefGoogle Scholar
  9. 9.
    Ou, Z.-C., Chen, Y.-H.: Re-examination of the PKHS crack model in piezoelectric materials. Euro. J. Mech. A 26, 659–675 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Qin, Q. H.: Fracture Mechanics of Piezoelectric Materials. WIT Press, Southampton, Boston (2001)Google Scholar
  11. 11.
    Zhang, T.-Y., Zhao, M. H., Tong, P.: Fracture of piezoelectric ceramics. Adv. Appl. Mech. 38, 147–289 (2002)CrossRefGoogle Scholar
  12. 12.
    Chen, Y.-H., Hasebe, N.: Current understanding on fracture behaviors of ferroelectric/piezoelectric. J. Intell. Mater. Syst. Struct. 16, 673–687 (2005)CrossRefGoogle Scholar
  13. 13.
    Park, S. B., Sun, C. T.: Fracture criteria for piezoelectric ceramics. J. Am. Ceram. Soc. 78, 1475–1480 (1995)CrossRefGoogle Scholar
  14. 14.
    Narita, F., Shindo, Y., Horiguchi, K. Electroelastic fracture mechanics of piezoelectric ceramics. In: Shindo, Y. (ed.) Mechanics of Electromagnetic Material Systems and Structures, pp. 89–101, WIT Press, Southampton, Boston (2003)Google Scholar
  15. 15.
    Fu, R., Zhang, T.Y.: Effect of an applied electric field on the fracture toughness of lead zirconate titanate ceramics. J. Am. Ceram. Soc. 83, 1215–1218 (2000)Google Scholar
  16. 16.
    Shindo, Y., Narita, F., Horiguchi, K., Magara, Y., Yoshida, M.: Electric fracture and polarization switching properties of piezoelectric ceramic PZT studied by the modified small punch test. Acta Mater. 51, 4773–4782 (2003)CrossRefGoogle Scholar
  17. 17.
    Tiersten, H. F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)Google Scholar
  18. 18.
    Maugin, G. A.: Continuum Mechanics of Electromagnetic Solids. Elsevier Science, Amsterdam (1988)MATHGoogle Scholar
  19. 19.
    Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T, Nakamura, M.: Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  20. 20.
    Guo, Y., Kakimoto, K., Ohsato, H.: Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRefGoogle Scholar
  21. 21.
    Chen, P. J., Tucker, T. J.: One dimensional polar mechanical and dielectric responses of the ferroelectric ceramic PZT 65/35 due to domain switching. Int. J. Eng. Sci. 19, 147–158 (1981)MATHCrossRefGoogle Scholar
  22. 22.
    Hwang, S. C., Lynch, C. S., McMeeking, R. M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall. Mater. 43, 2073–2084 (1995)CrossRefGoogle Scholar
  23. 23.
    Kamlah, M., Tsakmakis, C: Phenomenological modeling of the non-linear electromechanical coupling in ferroelectrics. Int. J. Solids Struct. 36, 669–695 (1999)MATHCrossRefGoogle Scholar
  24. 24.
    Huber, J. E., Fleck, N. A.: Multi-axial electrical switching of a ferroelectric: Theory versus experiment. J. Mech. Phys. Solids 49, 785–811 (2001)MATHCrossRefGoogle Scholar
  25. 25.
    Sun, C. T., Achuthan, A., Domain-switching criteria for ferroelectric materials subjected to electrical and mechanical loads. J. Am. Ceram. Soc. 87, 395–400 (2004)CrossRefGoogle Scholar
  26. 26.
    Loge, R. E., Suo, Z.: Nonequilibrium thermodynamics of ferroelectric domain evolution. Acta Mater. 44, 3429–3438 (1996)CrossRefGoogle Scholar
  27. 27.
    Sneddon, I. N.: Fourier Transforms. McGraw-Hill, New York (1951)Google Scholar
  28. 28.
    Sosa, H. A., Khutoryansky, N.: New development concerning piezoelectric materials with defects. Int. J. Solids Struct. 33, 3399–3414 (1996)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Shindo, Y., Watanabe, K., Narita, F.: Electroelastic analysis of a piezoelectric ceramic strip with a central crack. Int. J. Eng. Sci. 38, 1–19 (2000)CrossRefGoogle Scholar
  30. 30.
    Sih, G. C.: Mechanics of Fracture Initiation and Propagation. Kluwer Academic, The Netherlands (1991)Google Scholar
  31. 31.
    Zuo, J. Z., Sih, G. C.: Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theor. Appl. Fract. Mech. 34, 17–33 (2000)CrossRefGoogle Scholar
  32. 32.
    Lin, S., Narita, F., Shindo, Y.: Comparison of energy release rate and energy density criteria for a piezoelectric layered composite with a crack normal to interface. Theor. Appl. Fract. Mech. 39, 229–243 (2003)CrossRefGoogle Scholar
  33. 33.
    Pak, Y. E.: Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79–100 (1992)CrossRefGoogle Scholar
  34. 34.
    Wang, B. L., Mai, Y.-W.: On the electrical boundary conditions on the crack surfaces in piezoelectric ceramics. Int. J. Eng. Sci. 41, 633–652 (2003)CrossRefGoogle Scholar
  35. 35.
    Shindo, Y., Narita, F., Saito, F.: Electroelastic intensification and domain switching near plane strain crack in rectangular piezoelectric material. J. Mech. Mater. Struct. 2, 1525–1540 (2007)CrossRefGoogle Scholar
  36. 36.
    Pak, Y. E., Tobin, A.: On electric field effects in fracture of piezoelectric materials. In: Lee, J. S., Maugin, G. A., Shindo, Y. (eds.) Mechanics of Electromagnetic Materials and Structures, AMD-Vol.161, MD-Vol.42, pp. 51–62. ASME (1993)Google Scholar
  37. 37.
    Shindo, Y., Oka, M., Horiguchi, K.: Analysis and testing of indentation fracture behavior of piezoelectric ceramics under an electric field. ASME J. Eng. Mater. Tech. 123, 293–300 (2001)CrossRefGoogle Scholar
  38. 38.
    Shindo, Y., Ozawa, E.: Dynamic analysis of a cracked piezoelectric material. In: Proc. IUTAM Symposium on Mechanical Modellings of New Electromagnetic Materials, pp. 297–304 (1990)Google Scholar
  39. 39.
    Shindo, Y., Narita, F., Ozawa, E.: Impact response of a finite crack in an orthotropic piezoelectric ceramic. Acta Mech. 137, 99–107 (1999)MATHCrossRefGoogle Scholar
  40. 40.
    Weichert, D., Schulz, M.: J-integral concept for multiphase materials. Comput. Mater. Sci. 1, 241–248 (1993)CrossRefGoogle Scholar
  41. 41.
    Shindo, Y., Narita, F., Mikami, M.: Electroelastic fracture mechanics of piezoelectric layered composites. J. Intell. Mater. Syst. Struct. 16, 573–582 (2005)CrossRefGoogle Scholar
  42. 42.
    Yoshida, M., Narita, F., Shindo, Y., Karaiwa, M., Horiguchi, K.: Electroelastic field concentration by circular electrodes in piezoelectric ceramics. Smart Mater. Struct. 12, 972–978 (2003)CrossRefGoogle Scholar
  43. 43.
    Hayashi, K., Shindo, Y., Narita, F.: Displacement and polarization switching properties of piezoelectric laminated actuators under bending. J. Appl. Phys. 94, 4603–4607 (2003)CrossRefGoogle Scholar
  44. 44.
    Narita, F., Shindo, Y., Hayashi, K.: Bending and polarization switching of piezoelectric laminated actuators under electromechanical loading. Comput. Struct. 83, 1164–1170 (2005)CrossRefGoogle Scholar
  45. 45.
    McMeeking, R. M.: Crack tip energy release rate for a piezoelectric compact tension specimen. Eng. Fract. Mech. 64, 217–244 (1999)CrossRefGoogle Scholar
  46. 46.
    McMeeking, R. M.: The energy release rate for a Griffith crack in a piezoelectric material. Eng. Fract. Mech. 71, 1149–1163 (2004)CrossRefGoogle Scholar
  47. 47.
    Kalyanam, S., Sun, C. T.: Modeling of electrical boundary condition and domain switching in piezoelectric materials. Mech. Mater. 37, 769–784 (2005)CrossRefGoogle Scholar
  48. 48.
    Sun, C. T., Park, S. B.: Measuring fracture toughness of piezoceramics by Vickers indentation under the influence of electric fields. Ferroelectrics 248, 79–95 (2000)CrossRefGoogle Scholar
  49. 49.
    Lin, S., Narita, F., Shindo, Y.: Electroelastic analysis of a penny-shaped crack in a piezoelectric ceramic under mode I loading. Mech. Res. Comm. 30, 371–386 (2003)MATHCrossRefGoogle Scholar
  50. 50.
    Magara, Y., Narita, F., Shindo, Y., Karaiwa, M.: Finite element analysis of electric fracture properties in modified small punch testing of piezoceramic plates. J. Appl. Phys. 95, 4303–4309 (2004)CrossRefGoogle Scholar
  51. 51.
    Cao, H., Evans, A. G.: Electric-field-induced fatigue crack growth in piezoelectrics. J. Am. Ceram. Soc. 77, 1783–1786 (1994)CrossRefGoogle Scholar
  52. 52.
    Shang, J. K., Tan, X.: A maximum strain criterion for electric-field-induced fatigue crack propagation in ferroelectric ceramics. Mater. Sci. Eng. A. 301, 131–139 (2001)CrossRefGoogle Scholar
  53. 53.
    Liu, B., Fang, D., Hwang, K. C.: Electric-field-induced fatigue crack growth in ferroelectric ceramics. Mater. Lett. 54, 442–446 (2002)CrossRefGoogle Scholar
  54. 54.
    Makino, H., Kamiya, N.: Effect of DC electric field on mechanical properties of piezoelectric ceramics. Jpn. J. Appl. Phys. 33, 5323–5327 (1994)CrossRefGoogle Scholar
  55. 55.
    Fu, R., Zhang, T. Y.: Effects of an applied electric field on the modulus of rupture of poled lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 1058–1060 (1998)CrossRefGoogle Scholar
  56. 56.
    Fu, R., Zhang, T. Y.: Influence of temperature and electric field on the bending strength of lead zirconate titanate ceramics. Acta Mater. 48, 1729–1740 (2000)CrossRefGoogle Scholar
  57. 57.
    Shindo, Y., Murakami, H., Horiguchi, K., Narita, F.: Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked-beam methods. J. Am. Ceram. Soc. 85, 1243–1248 (2002)Google Scholar
  58. 58.
    Narita, F., Shindo, Y., Saito, F.: Cyclic fatigue crack growth in three-point bending PZT ceramics under electromechanical loading. J. Am. Ceram. Soc. 90, 2517–2524 (2007)CrossRefGoogle Scholar
  59. 59.
    Narita, F., Shindo, Y., Hirama, M.: Electric delayed fracture and localized polarization switching of cracked piezoelectric ceramics in three-point bending. Int. J. Damage Mech., in pressGoogle Scholar
  60. 60.
    Shindo, Y., Narita, F., Mikami, M.: Double torsion testing and finite element analysis for determining the electric fracture properties of piezoelectric ceramics. J. Appl. Phys. 97, 114109 (2005)CrossRefGoogle Scholar
  61. 61.
    Fang, D., Liu, B., Sun, C. T.: Fatigue crack growth in ferroelectric ceramics driven by alternating electric fields. J. Am. Ceram. Soc. 87, 840–846 (2004)CrossRefGoogle Scholar
  62. 62.
    Shieh, J., Huber, J. E., Fleck, N. A.: Fatigue crack growth in ferroelectrics under electrical loading. J. Euro. Ceram. Soc. 26, 95–109 (2006)CrossRefGoogle Scholar
  63. 63.
    Salz, C. R. J., Hoffman, M., Westram, I., Rodel, J.: Cyclic fatigue crack growth in PZT under mechanical loading. J. Am. Ceram. Soc. 88, 1331–1333 (2005)CrossRefGoogle Scholar
  64. 64.
    Shindo, Y., Narita, F., Saito, F.: Static fatigue behavior of cracked piezoelectric ceramics in three-point bending under electric fields. J. Euro. Ceram. Soc. 27, 3135–3140 (2007)CrossRefGoogle Scholar
  65. 65.
    Lynch, C. S., Yang, W., Collier, L., Suo, Z., McMeeking, R. M.: Electric field induced cracking in ferroelectric ceramics. Ferroelectrics 166, 11–30 (1995)Google Scholar
  66. 66.
    Weitzing, H., Schneider, G. A., Steffens, J., Hammer, M., Hoffmann, M. J.: Cyclic fatigue due to electric loading in ferroelectric ceramics. J. Euro. Ceram. Soc. 19, 1333–1337 (1999)CrossRefGoogle Scholar
  67. 67.
    Shindo, Y., Narita, F., Hirama, M.: Dynamic fatigue of cracked piezoelectric ceramics under electromechanical loading: Three-point bending test and finite element analysis. J. Mech. Mater. Struct., in pressGoogle Scholar
  68. 68.
    Li, S., Bhalla, A. S., Newnham, R. E., Cross, L. E.: Quantitative evaluation of extrinsic contribution to piezoelectric coefficient d33 in ferroelectric PZT ceramics. Mater. Lett. 17, 21–26 (1993)CrossRefGoogle Scholar
  69. 69.
    Narita, F., Shindo, Y., Mikami, M.: Analytical and experimental study of nonlinear bending response and domain wall motion in piezoelectric laminated actuators under AC electric fields. Acta Mater. 53, 4523–4529 (2005)CrossRefGoogle Scholar
  70. 70.
    Taya, M., Almajid, A. A., Dunn, M., Takahashi, H.: Design of bimorph piezocomposite actuators with functionally graded microstructure. Sens. Actuators A 107, 248–260 (2003)CrossRefGoogle Scholar
  71. 71.
    Qiu, J., Tani, J., Ueno, T., Morita, T., Takahashi, H., Du, H.: Fabrication and high durability of functionally graded piezoelectric bending actuators. Smart Mater. Struct. 12, 115–121 (2003)CrossRefGoogle Scholar
  72. 72.
    Shindo, Y., Narita, F., Nakagawa, J.: Nonlinear bending characteristics and sound pressure level of functionally graded piezoelectric actuators by AC electric fields: simulation and experiment. Smart Mater. Struct. 16, 2296–2301 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yasuhide Shindo
    • 1
  1. 1.Department of Materials ProcessingGraduate School of Engineering, Tohoku UniversitySendaiJapan

Personalised recommendations