Advertisement

Two-Dimensional Static Problems: Stroh Formalism

Abstract

The two-dimensional configuration has had its unique position in boundary value problems since people developed various analytical concepts and procedures from it. The focus of the present chapter is to introduce the Stroh formalism in the two-dimensional piezoelectric boundary value problem. Historically, the scheme was originally proposed by Eshelby et al. [1] for linear elasticity in anisotropic solids. The formulation has been considered to be elegant and neat for studies of dislocation [2], wave propagation [3], and interfacial cracks [4]. Then, the scheme was extended to the piezoelectric solids which are intrinsically anisotropic. Barnett and Lothe [5] extended this formalism to the piezoelectricity when a dislocation in an infinite piezoelectric medium was studied. Most important configurations of boundary value problems in piezoelectricity via Stroh formalism were studied in the 1990s after their corresponding problems in anisotropic elasticity had been worked out in the 1980s and early 1990s.

Keywords

Stress Intensity Factor Piezoelectric Material Anisotropic Elasticity Hilbert Problem Elliptic Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eshelby, J.D., Read, W.T., and Shockley, W.(1953) Anisotropic elasticity with applications to dislocation theory, Act. Metall. 1, 251–259.CrossRefGoogle Scholar
  2. 2.
    Stroh, A.N.(1958) Dislocation and crack in anisotropic elasticity, Philosoph. Mag., 3, 625–646.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barnett, D.M. and Lothe, J. (1985) Free surface (Rayleigh) waves in an anisotropic elastic half space: The surface impedance method, Proc. Roy. Soc. A, 402, 135–152.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ting, T.C.T. (1986) Explicit solution and invariance of the singularities at an interface crack in anisotropic composites, Int. J. Solids Struct., 22(9), 965–983.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Barnett, D.M. and Lothe, J. (1975) Dislocation and line charges in anisotropic piezoelectric insulators, Physica Status Solidi (b), 67,105–111.CrossRefGoogle Scholar
  6. 6.
    Chung, M.Y. and Ting, T.C.T. (1996) Piezoelectric solids with an elliptic inclusion or hole, Int. J. Solids Struct., 33(23), 1343–1361.MathSciNetGoogle Scholar
  7. 7.
    Eshelby, J.D. (1957) The determination of elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. A, 241, 376–396.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Suo, Z., Kuo, C.M., Barnett, D.M., and Willis, J.R. (1992) Fracture mechanics for piezoelectric ceramics, J. Mech. Phys. Solids, 40(4), 739–765.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fan H., Sze, K.Y., and Yang W. (1996) Two dimensional contact on a piezoelectric half space, Int. J. Solids Struct., 33(9), 1305–1315.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fan, H. (1995) Decay rate in a piezoelectric strip, Int. J. Eng. Sci., 33(8), 1095–1103.MATHCrossRefGoogle Scholar
  11. 11.
    Ting, T.C.T (1996) Anisotropic Elasticity: Theory and Applications, Oxford University Press, Oxford, UK.MATHGoogle Scholar
  12. 12.
    Lekhnitskii, S.G. (1961) Theory of Elasticity of an Anisotropic Body, Holden–Day, San Francisco.Google Scholar
  13. 13.
    Yang, J.S. (2006) The Mechanics of Piezoelectric Structures, World Scientific, NJ.CrossRefGoogle Scholar
  14. 14.
    Pak Y.E. (1990) Crack extension force in a piezoelectric material, ASME J. Appl. Mech. 57, 647–653.MATHGoogle Scholar
  15. 15.
    Sosa, H.A. and Castro, M.A.(1994) On concentrated loads at the boundary of a piezoelectric half-plane, J. Phys. Mech. of Solids, 42(7), 1105–1122.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Mura, T. (1987) Micromechanics of Defects in Solids, 2nd edition, Martinus Nijhoof, Netherlands.Google Scholar
  17. 17.
    Wang, B. (1992) Three dimensional analysis of an ellipsoidal inclusion in a piezoelectric material, Int. J. Solids Struct., 29(3), 293–308.MATHCrossRefGoogle Scholar
  18. 18.
    Budiansky, B. (1965) On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids, 13, 223–227.CrossRefGoogle Scholar
  19. 19.
    Hwu, C., and Ting, T.C.T. (1989) Two-dimensional problem of the anisotropic elastic solids with an elliptic inclusion, Q. J. Mech. Appl. Math., 42, 553–572.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Chung, M. Y. and Ting, T.C.T. (1995) The Green function for a piezoelectric piezomagnetic magneteletric anisotropic elastic medium with an elliptic hole or rigid inclusion, Philosophi. Mag. Lett., 72(6), 405–410.CrossRefGoogle Scholar
  21. 21.
    England, A.H. (1971) Complex Variable Methods in Elasticity, John Wiley & Sons, London, UK.MATHGoogle Scholar
  22. 22.
    Weertman, J.R. (1986) Zener–Stroh crack, Zener–Hollomon parameter and other topics, J. Appl. Phys., 60(6), 1877–1887.CrossRefGoogle Scholar
  23. 23.
    Stroh, A.N. (1954) Formation of cracks as a results of plastic flow, Proc. Roy. Soc. A, 223, pp 404–414.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Stroh, A.N. (1955) Formation of cracks in plastic flow II, Proc. Roy. Soc. A, 232, 548–560.MATHCrossRefGoogle Scholar
  25. 25.
    Fan, H. (1994) Interfacial Zener-Stroh crack, ASME J. Appl. Mech., 61(4), 829–834.MATHGoogle Scholar
  26. 26.
    Suo, Z. (1990) Singularities, interfaces and cracks in the dissimilar anisotropic medium, Proc. Roy. Soc. A, 427, 331–358.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Suo, Z. (1993) Models for breakdown-resistant dielectric and ferroelectric ceramics, J. Mech. Phys. Solids, 41(7) 1155–1176.CrossRefGoogle Scholar
  28. 28.
    Muskhelishvili, N.I. (1977) Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff International, Leyden, Netherlands.Google Scholar
  29. 29.
    Fan, H. and Keer, L.M. (1994) Two-dimensional contact on an anisotropic elastic half space, ASME J Appl. Mech., 61, 250–25.MATHGoogle Scholar
  30. 30.
    Johnson, K.L. (1985) Contact Mechanics, Cambridge University Press, Cambridge, UK.MATHGoogle Scholar
  31. 31.
    Salt, D. (1987) Hy-Q: Handbook of Quartz Crystal Devices, Van Nostrand Reinhold, UK.Google Scholar
  32. 32.
    Horgan, C.O. and Knowles, J. (1983) Recent development concerning Saint-Venant principle, Adv. Appl. Mech., 23, 180–271.MathSciNetGoogle Scholar
  33. 33.
    Horgan, C.O. (1989) Recent development concerning Saint-Venant principle: An update, Appl. Mech. Rev., 42(1), 295–303.CrossRefMathSciNetGoogle Scholar
  34. 34.
    Wang, M.Z., Ting, T.C.T., and Yan, G. (1993) The anisotropic elastic semi-infinite strip, Quart. Appl. Math., L1(2), 283–297.MathSciNetGoogle Scholar
  35. 35.
    Borrelli, A., C.O. Horgan, and M.C. Patria (2006) Saint-Venant end effect for plane deformation of linear piezoelectric solid, Int. J. Solids Struct., 43, 943–956.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hui Fan
    • 1
  1. 1.Nanyang Technological UniversityRepublic of Singapore

Personalised recommendations