Advertisement

Abstract

Coupling between mechanical and electric fields has stimulated interesting research related to the microelectromechanical system [1, 2]. The major applications are in sensor and actuator devices by which an electric voltage can induce an elastic deformation and vice versa. Because many novel materials, such as the nitride group semiconductors, are piezoelectric, study on quantum nanostructures is currently a cutting-edge topic with the strain energy band engineering in the center [3, 4]. Novel laminated composites (with adaptive and smart components) are continuously attracting great attention from mechanical, aerospace, and civil engineering branches [5]. In materials property study, the Eshelby-based micromechanics theory has been very popular [6]. In most of these exciting research topics, the fundamental solution of a given system under a unit concentrated force/charge or simply the Green’s function solution is required. This motivates the writing of this chapter. In this chapter, however, only the static case with general anisotropic piezoelectricity is considered, even though a couple of closely related references on vibration and/or dynamics (time-harmonic) wave propagation are briefly reviewed.

Keywords

Electric Displacement Point Force Piezoelectric Solid Point Dislocation Multilayered Half Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yang, J. S. and Hu, Y. T. (2004): Mechanics of electroelastic bodies under biasing fields, Appl. Mech. Rev., 57, 173–189.CrossRefGoogle Scholar
  2. 2.
    Yang, J. S. (2006): A review of a few topics in piezoelectricity. Applied Mechanics Reviews, 59, 335–345.CrossRefGoogle Scholar
  3. 3.
    Bimberg, D., Grundmann, M., and Ledentsov, N. N. (1999): Quantum Dot Heterostructures. Wiley, New York.Google Scholar
  4. 4.
    Maranganti, R. and Sharma, P. (2006): A review of strain field calculations in embedded quantum dots and wires. In Handbook of Theoretical and Computational Nanotechnology. Edited by M. Reith and W. Schommers.Google Scholar
  5. 5.
    Saravanos, D. A., Heyliger, P. R., and Hopkins, D. A. (1997): Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates. Int. J. Solids Struct., 34, 359–378.MATHCrossRefGoogle Scholar
  6. 6.
    Kuvshinov, B. N. (2008): Elastic and piezoelectric fields due to polyhedral inclusions. Int. J. Solids Struct., 45, 1352–1384.MATHCrossRefGoogle Scholar
  7. 7.
    Tiersten, H. F. (1969): Linear Piezoelectric Plate Vibrations, Plenum, New York.Google Scholar
  8. 8.
    Barnett, D. M. and Lothe, J. (1975): Dislocations and line charges in anisotropic piezoelectric insulators, Phys. Stat. Sol. (b), 67, 105–111.CrossRefGoogle Scholar
  9. 9.
    Pan, E. (1999): A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Eng. Anal. Bound. Elem, 23, 67–76.MATHCrossRefGoogle Scholar
  10. 10.
    Steketee, J. A. (1958): On Volterra’s dislocation on a semi-infinite elastic medium. Can. J. Phys., 36, 192–205.MATHMathSciNetGoogle Scholar
  11. 11.
    Pan, E. (1991): Dislocation in an infinite poroelastic medium. Acta Mech, 87, 105–115.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pan, E. (1989): Static response of a transversely isotropic and layered half-space to general dislocation sources. Phys. Earth Planet. Inter., 58, 103–117.CrossRefGoogle Scholar
  13. 13.
    Pan, E. (1990): Thermoelastic deformation of a transversely isotropic and layered half-space by surface loads and internal sources. Phys. Earth Planet. Inter., 60, 254–264.CrossRefGoogle Scholar
  14. 14.
    Pan, E. (1999): Green’s functions in layered poroelastic half-spaces. Int. J. Numer. Anal. Meth. Geomech., 23, 1631–1653.MATHCrossRefGoogle Scholar
  15. 15.
    Mindlin, R. D. (1936): Force at a point in the interior of a semi-infinite solid. Physics, 7, 195–202.CrossRefGoogle Scholar
  16. 16.
    Maruyama, T. (1964): Statical elastic dislocations in an infinite and semi-infinite medium. Bull. Earthq. Res. Inst., 42, 289–368.MathSciNetGoogle Scholar
  17. 17.
    Maruyama, T. (1966): On two-dimensional elastic dislocations in an infinite and semiinfinite medium. Bull. Earthq. Res. Inst., 44, 811–871.Google Scholar
  18. 18.
    Yu, H.Y., Sanday, S.C., and Chang, C.I. (1994): Elastic inclusions and inhomogeneities in transversely isotropic solids. Proc. R. Soc. Lond. A, 444, 239–252.MATHGoogle Scholar
  19. 19.
    Ting, T. C. T. (1996): Anisotropic Elasticity, Oxford University Press, Oxford.MATHGoogle Scholar
  20. 20.
    Pan, E. (1997): A general boundary element analysis of 2-D linear elastic fracture mechanics. Int. J. Fract., 88, 41–59.CrossRefGoogle Scholar
  21. 21.
    Pan, E. (2002): Mindlin’s problem for an anisotropic piezoelectric half space with general boundary conditions. Proc. R. Soc. Lond. A, 458, 181–208.MATHCrossRefGoogle Scholar
  22. 22.
    Pan, E. (2003): Three-dimensional Green’s functions in an anisotropic half space with general boundary conditions. ASME J. Appl. Mech., 70, 101–110.MATHCrossRefGoogle Scholar
  23. 23.
    Jiang, X. and Pan, E. (2004): Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes. Int. J. Solids Struct., 41, 4361–4382.MATHCrossRefGoogle Scholar
  24. 24.
    Pan, E. (2003): Three-dimensional Green’s functions in anisotropic elastic bimaterials with imperfect interfaces. ASME J. Appl. Mech., 70, 180–190.MATHCrossRefGoogle Scholar
  25. 25.
    Pan, E. (2003): Some new three-dimensional Green’s functions in anisotropic piezoelectric bimaterials. Electron. J. Bound. Elem., 1, 236–269.MathSciNetGoogle Scholar
  26. 26.
    Ding, H. J., Chen, B., and Liang, J. (1996): On the general solutions for coupled equation for piezoelectric media. Int. J. Solids Struct., 33, 2283-2298.MATHCrossRefGoogle Scholar
  27. 27.
    Ding, H. J., Wang, G. Q., and Liang, J. (1996): General and fundamental solutions of plane piezoelectroelastic problem. Acta Mech Sinica, 28, 441-448.Google Scholar
  28. 28.
    Ding, H. J., Wang, G. Q., and Chen, W. Q. (1997): Fundamental solutions for plane problem of piezoelectric materials. Sci. China, E40, 331–336.CrossRefGoogle Scholar
  29. 29.
    Ding, H. J., Chen, B., and Liang, J. (1997): Fundamental solution for transversely isotropic piezoelectric media. Sci. China, A39, 766–775. 27Google Scholar
  30. 30.
    Ding, H. J., Chi, Y., and Guo, F. (1999): Solutions for transversely isotropic piezoelectric infinite body, semi-infinite body and bimaterial infinite body subjected to uniform ring loading and charge. Int. J. Solids Struct., 36, 2613–2631.MATHCrossRefGoogle Scholar
  31. 31.
    Ding, H. J. and Liang, J. (1999): The fundamental solutions for transversely isotropic piezoelectricity and boundary element method.Comput. Struct., 71, 447–455.CrossRefGoogle Scholar
  32. 32.
    Ding, H. J. and Chen, W. Q. (2001): Three Dimensional Problems of Piezoelasticity. Nova Science, Huntington, New York.Google Scholar
  33. 33.
    Ding, H. J., Chen, W. Q., and Jiang, A. M. (2004): Green’s functions and boundary element method for transversely isotropic piezoelectric materials. Eng. Anal. Bound. Elem, 28, 975–987.MATHCrossRefGoogle Scholar
  34. 34.
    Ding, H. J., Chen, W. Q., and Zhang, L. (2006): Elasticity of Transversely Isotropic Materials. Series: Solid Mechanics and Its Applications (Ed. G. M. L. Galdwell), Vol. 126, Kluwer Academic, Boston.Google Scholar
  35. 35.
    Dunn, M. L. (1994): Electroelastic Green’s functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems. Int. J. Eng. Sci., 32, 119–131.MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Dunn, M. L. and Wienecke, H. A. (1996): Green’s functions for transversely isotropic piezoelectric solids. Int. J. Solids Struct., 33, 4571–4581.MATHCrossRefGoogle Scholar
  37. 37.
    Dunn, M. L. and Wienecke, H. A. (1999): Half-space Green’s functions for transversely isotropic piezoelectric solids. ASME J. Appl. Mech., 66, 675–679.Google Scholar
  38. 38.
    Barnett, D. M. (1972): The precise evaluation of derivatives of the anisotropic elastic Green’s functions, Phys. Stat. Sol. (b), 49, 741–748.CrossRefGoogle Scholar
  39. 39.
    Chen, T. (1993): Green’s functions and the non-uniform transformation problem in a piezoelectric medium, Mech. Res. Comm., 20, 271–278.MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Chen, T. and Lin, F. Z. (1993): Numerical evaluation of derivatives of the anisotropic piezoelectric Green’s functions. Mech. Res. Comm., 20, 501–506.MATHCrossRefGoogle Scholar
  41. 41.
    Malen, K. (1971): A unified six-dimensional treatment of elastic Green’s functions and dislocations. Phys. Stat. Sol. (b), 44, 661–672.CrossRefGoogle Scholar
  42. 42.
    Wang, C. Y. (1997): Elastostatic fields produced by a point source in solids of general anisotropy. J. Eng. Math., 32, 41–52.MATHCrossRefGoogle Scholar
  43. 43.
    Akamatsu, M. and Tanuma, K. (1997): Green’s function of anisotropic piezoelectricity. Proc. R. Soc. Lond. A, 453, 473–487.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Pan, E. and Tonon, F. (2000): Three-dimensional Green’s functions in anisotropic piezoelectric solids. Int. J. Solids Struct., 37, 943–958.MATHCrossRefGoogle Scholar
  45. 45.
    Tonon, F., Pan, E., and Amadei, B. (2001): Green’s functions and boundary element method formulation for 3D anisotropic media. Comput. Struct., 79, 469–482.CrossRefGoogle Scholar
  46. 46.
    Pan, E. and Yuan, F. G. (2000): Three-dimensional Green’s functions in anisotropic piezoelectric bimaterials, Int. J. Eng. Sci., 38, 1939–1960.CrossRefGoogle Scholar
  47. 47.
    Pan, E. and Yang, B. (2003): Three-dimensional interfacial Green’s functions in anisotropic bimaterials. Appl. Math. Model., 27, 307–326.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Pan, E. (1989): Static response of a transversely isotropic and layered half-space to general surface loads. Phys. Earth Planet. Inter., 54, 353–363.CrossRefGoogle Scholar
  49. 49.
    Pan, E. (1997): Static Green’s functions in multilayered half-spaces. Appl. Math. Model., 21, 509–521.MATHCrossRefGoogle Scholar
  50. 50.
    Pan, E. (2003): Three-dimensional fundamental solutions in multilayered piezoelectric solids. Chinese J. Mech., A19, 127–132.Google Scholar
  51. 51.
    Pan, E. and Han, F. (2005): Green’s functions for transversely isotropic piezoelectric functionally graded multilayered half spaces. Int. J. Solids Struct., 42, 3207-3233.MATHCrossRefGoogle Scholar
  52. 52.
    Han, F., Pan, E., Roy, A. K., and Yue, Z. Q. (2006): Responses of piezoelectric, transversely isotropic, functionally graded, and multilayered half spaces to uniform circular surface loadings. Comput. Model. Eng. Sci., 14, 15–29.Google Scholar
  53. 53.
    Yang, B. and Pan, E. (2002): Three-dimensional Green’s functions in anisotropic trimaterials. Int. J. Solids Struct., 39, 2235–2255.MATHCrossRefGoogle Scholar
  54. 54.
    Yang, B. and Pan, E. (2002): Efficient evaluation of three-dimensional Green’s functions in anisotropic elastostatic multilayered composites. Eng. Anal. Bound. Elements, 26, 355–366.MATHCrossRefGoogle Scholar
  55. 55.
    Heyliger, P. andWu, Y. C. (1999): Electroelastic fields in layered piezoelectric spheres. Int. J. Eng. Sci., 38, 143–161.CrossRefGoogle Scholar
  56. 56.
    Chen, W. Q., Ding, H. J., and Xu, R. Q. (2001): Three-dimensional static analysis of multi-layered piezoelectric hollow spheres via the state space method. Int. J. Solids Struct., 38, 4921–4936.MATHCrossRefGoogle Scholar
  57. 57.
    Wang, H. M. and Ding, H. J. (2007): Radial vibration of piezoelectric/ magnetostrictive composite hollow sphere. J. Sound Vib., 307, 330–348.CrossRefGoogle Scholar
  58. 58.
    Wang, H. M., Ding, H. J., and Ge, W. (2007): Transient responses in a two-layered elasto-piezoelectric composite hollow cylinder. Compos. Struct., 79, 192–201.CrossRefGoogle Scholar
  59. 59.
    Tanigawa, Y. and Ootao, Y. (2007): Transient piezothermoelasticity of a two-layered composite hollow cylinder constructed of isotropic elastic and piezoelectric layers due to asymmetrical heating. J. Thermal Stresses, 30, 1003–1023.CrossRefGoogle Scholar
  60. 60.
    Sun, C. T. and Cheng, N. C. (1974): Piezoelectric waves on a layered cylinder. J. Appl. Phys., 45, 4288–4294.CrossRefGoogle Scholar
  61. 61.
    Bai, H., Taciroglu, E., Dong, S. B., and Shah, A. H. (2004): Elastodynamic Green’s functions for a laminated piezoelectric cylinder. Int. J. Solids Struct., 41, 6335–6350.MATHCrossRefGoogle Scholar
  62. 62.
    Bai, H., Shah, A. H., Dong, S. B., and Taciroglu, E. (2006): End reflections in a layered piezoelectric circular cylinder. Int. J. Solids Struct., 43, 6309–6325.MATHCrossRefGoogle Scholar
  63. 63.
    Ding, H. J., Wang, H. M., and Chen, W. Q. (2003): Transient responses in a piezoelectric spherically isotropic hollow sphere for symmetric problems. ASME J. Appl. Mech., 70, 436–445.MATHCrossRefGoogle Scholar
  64. 64.
    Chakraborty, A., Gopalakrishnan, S., and Kausel, E. (2005): Wave propagation analysis in inhomogeneous piezo-composite layer by the thin-layer method. Int. J. Num. Meth. Eng., 64, 567–598.MATHCrossRefGoogle Scholar
  65. 65.
    Norris, A. N. (1994): Dynamic Green’s functions in anisotropic piezoelectric, thermoelastic and poroelastic solids. Proc. R. Soc. Lond., A447, 175–188.Google Scholar
  66. 66.
    Wang, C. Y. and Zhang, Ch. (2005): 3-D and 2-D dynamic Green’s functions and time-domain BIEs for piezoelectric solids. Eng. Anal. Bound. Elem., 29, 454–465.MATHCrossRefGoogle Scholar
  67. 67.
    Pan, E. (2005): Anisotropic Green’s Functions and BEMs (ed.), special issue: Eng. Analy. Bound. Elem., 29, 511–671.CrossRefGoogle Scholar
  68. 68.
    Liu, J.X., Liu, X.L., and Zhao, Y.B. (2001): Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int. J. Eng. Sci., 39, 1405–1418.CrossRefGoogle Scholar
  69. 69.
    Pan, E. (2002): Three-dimensional Green’s functions in anisotropic magnetoelectroelastic bimaterials. J. Appl. Math. Phys. ZAMP, 53, 815–838.MATHCrossRefGoogle Scholar
  70. 70.
    Li, J.Y. (2002): Magnetoelectric Green’s functions and their application to the inclusion and inhomogeneity problems. Int. J. Solids Struct., 39, 4201–4213.MATHCrossRefGoogle Scholar
  71. 71.
    Qin, Q. H. (2005): 2D Green’s functions of defective magnetoelectroelastic solids under thermal loading. Eng. Analy. Bound. Elem., 29, 577–585.MATHCrossRefGoogle Scholar
  72. 72.
    Li, L. J. and Li, J. Y. (2006): Electromagnetic fields induced in a uniaxial multiferroic material by a point source or an ellipsoidal inclusion. Phys. Rev., B73, 184416.Google Scholar
  73. 73.
    Qin, Q. H. (2007): Green’s Function and Boundary Elements of Multified Materials. Elsevier, Oxford, UK.Google Scholar
  74. 74.
    Lee, J. M. and Ma, C. C. (2007): Analytical full-field solutions of a magnetoelectroelastic layered half-plane. J. Appl. Phys., 101, 083502.CrossRefGoogle Scholar
  75. 75.
    Wang, X. and Pan, E. (2007): Electromagnetic fields induced by a point source in a uniaxial multiferroic full-space, half-space, and bimaterial-space. J. Mat. Res., 22, 2144–2155.CrossRefGoogle Scholar
  76. 76.
    Wang, X. and Pan, E. (2007): Electromagnetic fields induced by a cuboidal inclusion with uniform spontaneous polarization and magnetization. J. Appl. Phys., 101, 103524.CrossRefGoogle Scholar
  77. 77.
    Wang, X., Pan, E., Feng, W. J., and Albrecht, J. D. (2008): Electromagnetic fields induced by a concentrated heat source in multiferroic materials. Phys. Stat. Sol. (b), 245, 206–212.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ernian Pan
    • 1
  1. 1.Department of Civil Engineering, Dept. of Applied MathematicsThe University of AkronAkronUSA

Personalised recommendations