Skip to main content

Hadamard’s Matrices, Grothendieck’s Constant, and Root Two

  • Chapter
  • First Online:
Optimization and Optimal Control

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 39))

  • 2526 Accesses

Summary.

In this chapter, we start by a non-cooperative quantum game model for multiknapsack to give a flavor of quantum computing strength. Then, we show that many rank-deficient correlation matrices have Grothendieck’s constant that goes beyond \(\sqrt{2}\) for sufficiently large size. It suggests that cooperative quantum games relate powerset entanglement with Grothendieck’s constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adenier, G.: Refutation of Bell’s Theorem. In: Foundations of Probability and Physics (Vol. 13, pp. 29–38) QP–PQ: Quantum Probability and White Noise Analysis. World Science, Publishing, River Edge, NJ (2001)

    Google Scholar 

  2. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992) ACM Symposium on Computational Geometry (North Conway, NH, 1991)

    Google Scholar 

  3. Bannai, E., Sawano, M.: Symmetric designs attached to four-weight spin models. Des. Codes Cryptogr. 25 (1), 73–90 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bracken, C., McGuire, G., Ward, H.: New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices. Des. Codes Cryptogr. 41 (2), 195–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In Quantum Computation and Information (Washington, DC, 2000) (Vol. 305, pp. 53–74), Contemporary Mathematics. Amer. Math. Soc., Providence, RI (2002)

    Google Scholar 

  6. Broughton, W., McGuire, G.: Some observations on quasi-3 designs and Hadamard matrices. Des. Codes Cryptogr. 18(1–3), 55–61 (1999) Designs and codes – A memorial tribute to Ed Assmus.

    Google Scholar 

  7. Childs, A.M., Landahl, A.J., Parrilo, P.A.: Improved quantum algorithms for the ordered search problem via semidefinite programming (2006)

    Google Scholar 

  8. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4, 63–86 (1998)

    Article  MATH  Google Scholar 

  9. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4 (2), 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  10. Collins, D., Gisin,N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88 (4), 040404, 4 (2002).

    Article  MathSciNet  Google Scholar 

  11. Cornuéjols, G., Guenin, B., Tunçel, L.: Lehman matrices (2006) http://integer.tepper.cmu.edu/webpub/Lehman-v06.pdf

  12. Dasgupta, S., Gupta, A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algor. 22 (1), 60–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, J.F., Xu, X., Li, H., Zhou, X., Han, R.: Playing prisoner’s dilemma with quantum rules. Fluct. Noise Lett. 2 (4), R189–R203 (2002)

    Article  MathSciNet  Google Scholar 

  14. Dye, H.A.: Unitary solutions to the Yang-Baxter equation in dimension four. Quant. Inf. Process. 2 (1-2), 117–151 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farebrother, R.W., Groß, J., Troschke, S.-O.: Matrix representation of quaternions. Linear Algebra Appl. 362, 251–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fishburn, P.C., Reeds, J.A.: Bell inequalities, Grothendieck’s constant, and root two. SIAM J. Discrete Math. 7 (1), 48–56 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fortin, D., Rudolf, R.: Weak monge arrays in higher dimensions. Discrete Math. 189 (1–3), 105–115 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fukuda, K., Prodon, A.: Double Description Method Revisited. In: Combinatorics and Computer Science (Brest, 1995) (Vol. 1120, pp. 91–111) Lecture Notes in Comput. Sci., Springer: Berlin (1996)

    Google Scholar 

  19. Glover, F., Rego, C.: Ejection chain and filter-and-fan methods in combinatorial optimization. 4OR 4 (4), 263–296 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Grover, L., Patel, A., Tulsi, T.: A new algorithm for fixed point quantum search (2005)

    Google Scholar 

  21. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search, ACM, New York (1996)

    Google Scholar 

  22. Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6 (6), 580–593 (2002)

    Article  Google Scholar 

  23. Han, K.-H., Kim, J.-H.: Quantum-inspired evolutionary algorithms with a new termination criterion, \(h_\epsilon\) gate, and two phase scheme. IEEE Trans. Evol. Comput. 8 (2), 580–593 (2004)

    Article  Google Scholar 

  24. Jaeger, F.: On four-weight spin models and their gauge transformations. J. Algebraic Combin. 11 (3), 241–268 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kac, V., Cheung, P.: Quantum Calculus. Universitext, Springer, New York (2002)

    Book  Google Scholar 

  26. Kauffman, L.H., Lomonaco, S.J.: Entanglement criteria – Quantum and topological. New J. Phys. 4, 73.1–73.18 (electronic) (2002)

    Article  MathSciNet  Google Scholar 

  27. Kauffman, L.H., Lomonaco, S.J.: Braiding operators are universal quantum gates (2004)

    Google Scholar 

  28. Kauffman, L.H., Lomonaco, S.J.: Quantum knots (2004)

    Google Scholar 

  29. Khalfin, L.A., Tsirelson, B.S.: Quantum/classical correspondence in the light of Bell’s inequalities. Found. Phys. 22 (7), 879–948 (1992)

    Article  MathSciNet  Google Scholar 

  30. Kitaev, A.Yu., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Studies in Mathematics (Vol. 47). American Mathematical Society, Providence, RI (2002) Translated from the 1999 Russian original by Lester J. Senechal.

    Google Scholar 

  31. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem (1995)

    Google Scholar 

  32. Li, D., Huang, H., Li, X.: The fixed-point quantum search for different phase shifts (2006)

    Google Scholar 

  33. Marinescu, D., Marinescu, G.D.: Approaching Quantum Computing. Prentice Hall (2004)

    Google Scholar 

  34. Martí, R., Laguna, M., Glover, F.: Principles of scatter search. Eur. J. Oper. Res. 169 (2), 359–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Monge, G.: déblai et remblai. Mémoires de l’Académie des sciences, Paris (1781)

    Google Scholar 

  36. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41 (2), 303–332 (electronic) (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sica, L.: Bell’s inequalities i: An explanation for their experimental violation (2001)

    Google Scholar 

  38. Sica, L.: Correlations for a new Bell’s inequality experiment. Found. Phys. Lett. 15 (5), 473–486 (2002)

    Article  MathSciNet  Google Scholar 

  39. Vasquez, M., Hao, J.-K.: A hybrid approach for the 0–1 multidimensional knapsack problem (2001)

    Google Scholar 

  40. Werner, R.F., Wolf, M.M.: Bell inequalities and entanglement (2001)

    Google Scholar 

  41. Yost, D.: The Johnson-Lindenstrauss space. Extracta Math. 12(2), 185–192 1997. II Congress on Examples and Counterexamples in Banach Spaces (Badajoz, 1996)

    Google Scholar 

  42. Younes, A., Rowe, J., Miller, J.: Quantum search algorithm with more reliable behav0iour using partial diffusion (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Fortin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fortin, D. (2010). Hadamard’s Matrices, Grothendieck’s Constant, and Root Two. In: Chinchuluun, ., Pardalos, P., Enkhbat, R., Tseveendorj, I. (eds) Optimization and Optimal Control. Springer Optimization and Its Applications(), vol 39. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89496-6_20

Download citation

Publish with us

Policies and ethics