Skip to main content

The Arithmetic of Quadratic Forms

  • Chapter
  • First Online:
Book cover Number Theory

Part of the book series: Universitext ((UTX))

  • 4602 Accesses

Abstract

We have already determined the integers which can be represented as a sum of two squares. Similarly, one may ask which integers can be represented in the form x 2 + 2y 2 or, more generally, in the form ax 2 + 2bxy + cy 2, where a, b, c are given integers. The arithmetic theory of binary quadratic forms, which had its origins in the work of Fermat, was extensively developed during the 18th century by Euler, Lagrange, Legendre and Gauss. The extension to quadratic forms in more than two variables, which was begun by them and is exemplified by Lagrange’s theorem that every positive integer is a sum of four squares, was continued during the 19th century by Dirichlet, Hermite, H.J.S. Smith, Minkowski and others. In the 20th century Hasse and Siegel made notable contributions. With Hasse’s work especially it became apparent that the theory is more perspicuous if one allows the variables to be rational numbers, rather than integers. This opened the way to the study of quadratic forms over arbitrary fields, with pioneering contributions by Witt (1937) and Pfister (1965–67).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. E. Artin, Geometric algebra, reprinted, Wiley, New York, 1988. [Original edition, 1957]

    MATH  Google Scholar 

  2. T. Beth, D. Jungnickel and H. Lenz, Design theory, 2nd ed., 2 vols., Cambridge University Press, 1999.

    Google Scholar 

  3. A. Borel, Values of indefinite quadratic forms at integral points and flows on spaces of lattices, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 184–204.

    Article  MATH  MathSciNet  Google Scholar 

  4. J.W.S. Cassels, Rational quadratic forms, Academic Press, London, 1978.

    MATH  Google Scholar 

  5. J.W.S. Cassels and A. Fröhlich (ed.), Algebraic number theory, Academic Press, London, 1967.

    MATH  Google Scholar 

  6. J.H. Conway, Invariants for quadratic forms, J. Number Theory 5 (1973), 390–404.

    Article  MATH  MathSciNet  Google Scholar 

  7. S.G. Dani and G.A. Margulis, Values of quadratic forms at integral points: an elementary approach, Enseign. Math. 36 (1990), 143–174.

    MATH  MathSciNet  Google Scholar 

  8. J. Dieudonné, La géométrie des groupes classiques, 2nd ed., Springer-Verlag, Berlin, 1963.

    MATH  Google Scholar 

  9. A. Fröhlich, Quadratic forms ‘à la’ local theory, Proc. Camb. Phil. Soc. 63 (1967), 579–586.

    Article  MATH  Google Scholar 

  10. D. Garbanati, Class field theory summarized, Rocky Mountain J. Math. 11 (1981), 195–225.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Green, F. Pop and P. Roquette, On Rumely's local-global principle, Jahresber. Deutsch. Math.–Verein. 97 (1995), 43–74.

    MATH  MathSciNet  Google Scholar 

  12. I. Gusić, Weak Hasse principle for cubic forms, Glas. Mat. Ser. III 30 (1995), 17–24.

    MATH  MathSciNet  Google Scholar 

  13. H. Hasse, Mathematische Abhandlungen (ed. H.W. Leopoldt and P. Roquette), Band I, de Gruyter, Berlin, 1975.

    Google Scholar 

  14. J.S. Hsia, On the Hasse principle for quadratic forms, Proc. Amer. Math. Soc. 39 (1973), 468–470.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Jacobson, Basic Algebra I, 2nd ed., Freeman, New York, 1985.

    MATH  Google Scholar 

  16. Y. Kitaoka, Arithmetic of quadratic forms, Cambridge University Press, 1993.

    Google Scholar 

  17. C.W.H. Lam, The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (1991), 305–318.

    Article  MATH  MathSciNet  Google Scholar 

  18. T.Y. Lam, The algebraic theory of quadratic forms, revised 2nd printing, Benjamin, Reading, Mass., 1980.

    MATH  Google Scholar 

  19. D.W. Lewis, The Merkuryev–Suslin theorem, Irish Math. Soc. Newsletter 11 (1984), 29–37.

    MATH  Google Scholar 

  20. J. Milnor and D. Husemoller, Symmetric bilinear forms, Springer-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  21. J. Neukirch, Class field theory, Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  22. O.T. O'Meara, Introduction to quadratic forms, corrected reprint, Springer-Verlag, New York, 1999. [Original edition, 1963]

    Google Scholar 

  23. A. Pfister, Hilbert's seventeenth problem and related problems on definite forms, Mathematical developments arising from Hilbert problems (ed. F.E. Browder), pp. 483–489, Proc. Symp. Pure Math. 28, Part 2, Amer. Math. Soc., Providence, Rhode Island, 1976.

    Google Scholar 

  24. A. Pfister, Quadratic forms with applications to algebraic geometry and topology, Cambridge University Press, 1995.

    Google Scholar 

  25. A.R. Rajwade, Squares, Cambridge University Press, 1993.

    Google Scholar 

  26. M. Ratner, Interactions between ergodic theory, Lie groups, and number theory. Proceedings of the International Congress of Mathematicians: Zürich 1994, pp. 157–182, Birkhäuser, Basel, 1995.

    Google Scholar 

  27. W. Rudin, Sums of squares of polynomials, Amer. Math. Monthly 107 (2000), 813–821.

    Article  MATH  MathSciNet  Google Scholar 

  28. W. Scharlau, Quadratic and Hermitian forms, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  29. J.-P. Serre, A course in arithmetic, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  30. W.C. Waterhouse, Pairs of quadratic forms, Invent. Math. 37 (1976), 157–164.

    Article  MATH  MathSciNet  Google Scholar 

  31. K.S. Williams, On the size of a solution of Legendre's equation, Utilitas Math. 34 (1988), 65–72.

    MATH  MathSciNet  Google Scholar 

  32. E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937), 31–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coppel, W.A. (2009). The Arithmetic of Quadratic Forms. In: Number Theory. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89486-7_7

Download citation

Publish with us

Policies and ethics