Advertisement

Number Theory pp 129-178 | Cite as

More on Divisibility

  • W. A. Coppel
Chapter
Part of the Universitext book series (UTX)

Abstract

In this chapter the theory of divisibility is developed further. The various sections of the chapter are to a large extent independent.We consider in turn the law of quadratic reciprocity, quadratic fields, multiplicative functions, and linear Diophantine equations.

Keywords

Prime Ideal Prime Divisor Great Common Divisor Quadratic Residue Principal Ideal Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. [1]
    T.M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York, 1976.MATHGoogle Scholar
  2. [2]
    E. Artin, Algebraic numbers and algebraic functions, Nelson, London, 1968.Google Scholar
  3. [3]
    E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I, II, Collected Papers (ed. S. Lang and J.T. Tate), pp. 1–94, reprinted, Springer-Verlag, New York, 1986.Google Scholar
  4. [4]
    M. Barnabei, A. Brini and G.-C. Rota, The theory of Möbius functions, Russian Math. Surveys 41 (1986), no. 3, 135–188.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    E.A. Bender and J.R. Goldman, On the application of Möbius inversion in combinatorial analysis, Amer. Math. Monthly 82 (1975), 789–803.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    B.C. Berndt and R.J. Evans, The determination of Gauss sums, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 107–129.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    E. Brown, The first proof of the quadratic reciprocity law, revisited, Amer. Math. Monthly 88 (1981), 257–264.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    J.W. Bruce, A really trivial proof of the Lucas–Lehmer test, Amer. Math. Monthly 100 (1993), 370–371.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Cartier, Sur une généralisation des symboles de Legendre–Jacobi, Enseign. Math. 16 (1970), 31–48.MATHGoogle Scholar
  10. [10]
    J.W.S. Cassels and A. Fröhlich (ed.), Algebraic number theory, Academic Press, London, 1967.MATHGoogle Scholar
  11. [11]
    W.A. Coppel, Matrices of rational functions, Bull. Austral. Math. Soc. 11 (1974), 89–113.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    W.A. Coppel and D.J. Cullen, Strong system equivalence (II), J. Austral. Math. Soc. B 27 (1985), 223–237.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    L.E. Dickson, History of the theory of numbers, Vol. I, reprinted, Chelsea, New York, 1992.Google Scholar
  14. [14]
    N. Fitchas and A. Galligo, Nullstellensatz effectif et conjecture de Serre (théorème de Quillen–Suslin) pour le calcul formel, Math. Nachr. 149 (1990), 231–253.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    G.D. Forney, Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Control 13 (1975), 493–520.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    G. Frei, The reciprocity law from Euler to Eisenstein, The intersection of history and mathematics (ed. C. Sasaki, M. Sugiura and J.W. Dauben), pp. 67–90, Birkhäuser, Basel, 1994.Google Scholar
  17. [17]
    C.F. Gauss, Disquisitiones arithmeticae, English translation by A.A. Clarke, revised by W.C. Waterhouse, Springer, New York, 1986. [Latin original, 1801]MATHGoogle Scholar
  18. [18]
    S. Gelbart, An elementary introduction to the Langlands program, Bull. Amer. Math. Soc. (N.S.) 10 (1984), 177–219.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    C.R. Hadlock, Field theory and its classical problems, Carus Mathematical Monographs no. 19, Mathematical Association of America, Washington, D.C., 1978. [Reprinted in paperback, 2000]MATHGoogle Scholar
  20. [20]
    H. Hasse, Number theory, English transl. by H.G. Zimmer, Springer-Verlag, Berlin, 1980.MATHGoogle Scholar
  21. [21]
    D.R. Heath-Brown, Odd perfect numbers, Math. Proc. Cambridge Philos. Soc. 115 (1994), 191–196.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    E. Hecke, Lectures on the theory of algebraic numbers, English transl. by G.U. Brauer, J.R. Goldman and R. Kotzen, Springer-Verlag, New York, 1981. [German original, 1923]MATHGoogle Scholar
  23. [23]
    E.L. Ince, Cycles of reduced ideals in quadratic fields, Mathematical Tables Vol. IV, British Association, London, 1934.Google Scholar
  24. [24]
    N. Jacobson, Basic Algebra I, 2nd ed., W.H. Freeman, New York, 1985.MATHGoogle Scholar
  25. [25]
    T. Kailath, Linear systems, Prentice–Hall, Englewood Cliffs, N.J., 1980.MATHGoogle Scholar
  26. [26]
    R.E. Kalman, Algebraic theory of linear systems, Topics in mathematical system theory (R.E. Kalman, P.L. Falb and M.A. Arbib), pp. 237–339, McGraw–Hill, New York, 1969.Google Scholar
  27. [27]
    I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464–491.MATHMathSciNetGoogle Scholar
  28. [28]
    E. Kummer, Collected Papers, Vol. I (ed. A. Weil), Springer-Verlag, Berlin, 1975.Google Scholar
  29. [29]
    T.Y. Lam, Serre's conjecture, Lecture Notes in Mathematics 635, Springer-Verlag, Berlin, 1978.MATHGoogle Scholar
  30. [30]
    E. Landau, Vorlesungen über Zahlentheorie, 3 vols., Hirzel, Leipzig, 1927. [Reprinted, Chelsea, New York, 1969]MATHGoogle Scholar
  31. [31]
    S. Lang, Algebra, corrected reprint of 3rd ed., Addison-Wesley, Reading, Mass., 1994.Google Scholar
  32. [32]
    S. Lang, Algebraic number theory, 2nd ed., Springer-Verlag, New York, 1994.MATHGoogle Scholar
  33. [33]
    G. Lejeune-Dirichlet, Werke, Band I, pp. 237–256, reprinted Chelsea, New York, 1969.Google Scholar
  34. [34]
    C.C. Macduffee, The theory of matrices, corrected reprint, Chelsea, New York, 1956.Google Scholar
  35. [35]
    P.J. McCarthy, Introduction to arithmetical functions, Springer-Verlag, New York, 1986.MATHGoogle Scholar
  36. [36]
    P. Morandi, Field and Galois theory, Springer-Verlag, New York, 1996.MATHGoogle Scholar
  37. [37]
    R. Narasimhan, Complex analysis in one variable, Birkhäuser, Boston, Mass., 1985.MATHGoogle Scholar
  38. [38]
    W. Narkiewicz, Elementary and analytic theory of algebraic numbers, 2nd ed., Springer-Verlag, Berlin, 1990.MATHGoogle Scholar
  39. [39]
    J. Neukirch, Algebraic number theory, English transl. by N. Schappacher, Springer, Berlin, 1999.MATHGoogle Scholar
  40. [40]
    M. Newman, Integral matrices, Academic Press, New York, 1972.MATHGoogle Scholar
  41. [41]
    P. Ribenboim, 13 Lectures on Fermat's last theorem, Springer-Verlag, New York, 1979.MATHGoogle Scholar
  42. [42]
    H.J.J. te Riele, Perfect numbers and aliquot sequences, Computational methods in number theory (ed. H.W. Lenstra Jr. and R. Tijdeman), Part I, pp. 141–157, Mathematical Centre Tracts 154, Amsterdam, 1982.Google Scholar
  43. [43]
    M.L. Rosen, A proof of the Lucas–Lehmer test, Amer. Math. Monthly 95 (1988), 855–856.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    H.H. Rosenbrock, State-space and multivariable theory, Nelson, London, 1970.MATHGoogle Scholar
  45. [45]
    G.-C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete 2 (1964), 340–368.MATHCrossRefMathSciNetGoogle Scholar
  46. [46]
    G. Rousseau, , J. Number Theory 48 (1994), 109–111.MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    P. Samuel, Algebraic theory of numbers, English transl. by A.J. Silberger, Houghton Mifflin, Boston, Mass., 1970.MATHGoogle Scholar
  48. [48]
    R. Sivaramakrishnan, Classical theory of arithmetic functions, M. Dekker, New York, 1989.MATHGoogle Scholar
  49. [49]
    H.J.S. Smith, Collected mathematical papers, Vol. 1, pp. 367–409, reprinted, Chelsea, New York, 1965.Google Scholar
  50. [50]
    R.G. Swan, Gubeladze's proof of Anderson's conjecture, Azumaya algebras, actions and modules (ed. D. Haile and J. Osterburg), pp. 215–250, Contemporary Mathematics 124, Amer. Math. Soc., Providence, R.I., 1992.Google Scholar
  51. [51]
    J. Tate, Problem 9: The general reciprocity law, Mathematical developments arising from Hilbert problems (ed. F.E. Browder), pp. 311–322, Proc. Symp. Pure Math. 28, Part 2, Amer. Math. Soc., Providence, Rhode Island, 1976.Google Scholar
  52. [52]
    H.S. Vandiver, Fermat's last theorem: its history and the nature of the known results concerning it, Amer. Math. Monthly 53 (1946), 555–578.MATHCrossRefMathSciNetGoogle Scholar
  53. [53]
    S.S. Wagstaff Jnr., Divisors of Mersenne numbers, Math. Comp. 40 (1983), 385–397.CrossRefMathSciNetGoogle Scholar
  54. [54]
    B.F. Wyman, What is a reciprocity law?, Amer. Math. Monthly 79 (1972), 571–586.MATHCrossRefMathSciNetGoogle Scholar

Additional References

  1. J. Bernstein and S. Gelbart (ed.), Introduction to the Langlands program, Birkhäuser, Boston, 2003.MATHGoogle Scholar
  2. E. Frenkel, Recent advances in the Langlands program, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 151–184.MATHCrossRefMathSciNetGoogle Scholar
  3. T. Metsänkylä, Catalan's conjecture: another old Diophantine problem solved, Bull. Amer. Math. Soc. (N.S.) 41 (2004), 43–57.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. A. Coppel
    • 1
  1. 1.GriffithAustralia

Personalised recommendations