Skip to main content

Connections with Number Theory

  • Chapter
  • First Online:
Number Theory

Part of the book series: Universitext ((UTX))

  • 4574 Accesses

Abstract

In Proposition II.40 we proved Lagrange’s theorem that every positive integer can be represented as a sum of 4 squares. Jacobi (1829), at the end of his Fundamenta Nova, gave a completely different proof of this theorem with the aid of theta functions. Moreover, his proof provided a formula for the number of different representations. Hurwitz (1896), by developing further the arithmetic of quaternions which was used in Chapter II, also derived this formula. Here we give Jacobi’s argument preference since, although it is less elementary, it is more powerful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. G.E. Andrews, A polynomial identity which implies the Rogers-Ramanujan identities, Scripta Math. 28 (1970), 297–305.

    Google Scholar 

  2. G.E. Andrews, The theory of partitions, Addison-Wesley, Reading, Mass., 1976. [Paperback edition, Cambridge University Press, 1998]

    MATH  Google Scholar 

  3. G.E. Andrews, R.A. Askey, B.C. Berndt, K.G. Ramanathan and R.A. Rankin (ed.), Ramanujan revisited, Academic Press, London, 1988.

    MATH  Google Scholar 

  4. G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, 1999.

    Google Scholar 

  5. L. Báez-Duarte, Hardy-Ramanujan's asymptotic formula for partitions and the central limit theorem, Adv. in Math. 125 (1997), 114–120.

    Article  MATH  Google Scholar 

  6. A. Baker, The diophantine equation y 2 = ax 3 + bx 2 + cx + d, J. London Math. Soc. 43 (1968), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Baker, The theory of linear forms in logarithms, Transcendence theory: advances and applications (ed. A. Baker and D.W. Masser), pp. 1–27, Academic Press, London, 1977.

    Google Scholar 

  8. R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982. [Reprinted, 1989]

    MATH  Google Scholar 

  9. A. Berkovich and B.M. McCoy, Rogers-Ramanujan identities: a century of progress from mathematics to physics, Proceedings of the International Congress of Mathematicians: Berlin 1998, Vol. III, pp. 163–172, Documenta Mathematica, Bielefeld, 1998.

    MathSciNet  Google Scholar 

  10. J.S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 253–287.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Bloch, A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture, Invent. Math. 58 (1980), 65–76.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Bloch, The proof of the Mordell conjecture, Math. Intelligencer 6 (1984), no. 2, 41–47.

    Article  MATH  MathSciNet  Google Scholar 

  13. D.M. Bressoud and D. Zeilberger, A short Rogers-Ramanujan bijection, Discrete Math. 38 (1982), 313–315.

    Article  MATH  MathSciNet  Google Scholar 

  14. D.M. Bressoud and D. Zeilberger, Bijecting Euler's partitions-recurrence, Amer. Math. Monthly 92 (1985), 54–55.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Bugeaud, On the size of integer solutions of elliptic equations, Bull. Austral. Math. Soc. 57 (1998), 199–206.

    Article  MATH  MathSciNet  Google Scholar 

  16. J.W.S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291.

    Article  MathSciNet  Google Scholar 

  17. J.S. Chahal, Manin's proof of the Hasse inequality revisited, Nieuw Arch. Wisk. (4) 13 (1995), 219–232.

    MATH  MathSciNet  Google Scholar 

  18. J. Čižmár, Birationale Transformationen (Ein historischer Überblick), Period. Polytech. Mech. Engrg. 39 (1995), 9–24.

    MATH  MathSciNet  Google Scholar 

  19. G. Cornell and J.H. Silverman (ed.), Arithmetic geometry, Springer-Verlag, New York, 1986.

    MATH  Google Scholar 

  20. G. Cornell, J.H. Silverman and G. Stevens (ed.), Modular forms and Fermat's last theorem, Springer, New York, 1997.

    MATH  Google Scholar 

  21. J.E. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, 1997.

    Google Scholar 

  22. H. Darmon, A proof of the full Shimura–Taniyama–Weil conjecture is announced, Notices Amer. Math. Soc. 46 (1999), 1397–1401.

    MATH  MathSciNet  Google Scholar 

  23. L.E. Dickson, History of the theory of numbers, 3 vols., Carnegie Institute, Washington, D.C., 1919–1923. [Reprinted Chelsea, New York, 1992]

    Google Scholar 

  24. L. Ehrenpreis and R.C. Gunning (ed.), Theta functions: Bowdoin 1987, Proc. Symp. Pure Math. 49, Amer. Math. Soc., Providence, R.I., 1989.

    Google Scholar 

  25. N.D. Elkies, On A 4 + B 4 + C 4 = D 4, Math. Comp. 51 (1988), 825–835.

    MATH  MathSciNet  Google Scholar 

  26. L.D. Faddeev and L.A. Takhtajan, Hamiltonian methods in soliton theory, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  27. A.S. Fokas and V.E. Zakharov (ed.), Important developments in soliton theory, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  28. S. Gelbart, Elliptic curves and automorphic representations, Adv. in Math. 21 (1976), 235–292.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Gelbart, An elementary introduction to the Langlands program, Bull. Amer. Math. Soc. (N.S.) 10 (1984), 177–219.

    Article  MATH  MathSciNet  Google Scholar 

  30. D. Goldfeld, Gauss' class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 23–37.

    Article  MATH  MathSciNet  Google Scholar 

  31. E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

  32. M. Hindry and J.H. Silverman, Diophantine geometry, Springer, New York, 2000.

    MATH  Google Scholar 

  33. J.C. Jantzen, Lectures on quantum groups, American Mathematical Society, Providence, R.I., 1996.

    MATH  Google Scholar 

  34. V.F.R. Jones, Subfactors and knots, CBMS Regional Conference Series in Mathematics 80, Amer. Math. Soc., Providence, R.I., 1991.

    MATH  Google Scholar 

  35. V.G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990.

    Google Scholar 

  36. A.A. Kirillov, Jr., Lectures on affine Hecke algebras and Macdonald's conjectures, Bull. Amer. Math. Soc. (N.S.) 34 (1997), 251–292.

    Article  MATH  MathSciNet  Google Scholar 

  37. A.W. Knapp, Elliptic curves, Princeton University Press, Princeton, N.J., 1992.

    MATH  Google Scholar 

  38. V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, 1993.

    Google Scholar 

  39. S. Lang, Introduction to modular forms, Springer-Verlag, Berlin, corr. reprint, 1995.

    Google Scholar 

  40. M. Laska, An algorithm for finding a minimal Weierstrass equation for an elliptic curve, Math. Comp. 38 (1982), 257–260.

    Article  MATH  MathSciNet  Google Scholar 

  41. J.H. van Lint and R.M. Wilson, A course in combinatorics, Cambridge University Press, 1992.

    Google Scholar 

  42. S.C. Milne, New infinite families of exact sums of squares formulas, Jacobi elliptic functions and Ramanujan's tau function, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 15004–15008.

    Article  MATH  MathSciNet  Google Scholar 

  43. K. Noda and H. Wada, All congruent numbers less than 10000, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 175–178.

    Article  MATH  MathSciNet  Google Scholar 

  44. J. Oesterlé, Le problème de Gauss sur le nombre de classes, Enseign. Math. 34 (1988), 43–67.

    MATH  MathSciNet  Google Scholar 

  45. M. Okado, M. Jimbo and T. Miwa, Solvable lattice models in two dimensions and modular functions, Sugaku Exp. 2 (1989), 29–54.

    MATH  Google Scholar 

  46. H. Rademacher, Topics in analytic number theory, Springer-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  47. K.A. Ribet, Galois representations and modular forms, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 375–402.

    Article  MATH  MathSciNet  Google Scholar 

  48. N. Schappacher, Développement de la loi de groupe sur une cubique, Séminaire de Théorie des Nombres, Paris 1988–89 (ed. C. Goldstein), pp. 159–184, Birkhäuser, Boston, 1990.

    Google Scholar 

  49. J.-P. Serre, A course in arithmetic, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  50. J.H. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York, 1986.

    MATH  Google Scholar 

  51. J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994.

    MATH  Google Scholar 

  52. J.H. Silverman and J. Tate, Rational points on elliptic curves, Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  53. L. Szpiro, La conjecture de Mordell [d'après G. Faltings], Astérisque 121–122 (1985), 83–103.

    MathSciNet  Google Scholar 

  54. J.T. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki: Vol. 1965/1966, Exposé no. 306, Benjamin, New York, 1966.

    Google Scholar 

  55. J.T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206.

    Article  MATH  MathSciNet  Google Scholar 

  56. R.L. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553–572.

    Article  MATH  MathSciNet  Google Scholar 

  57. J.B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math. 72 (1983), 323–334.

    Article  MATH  MathSciNet  Google Scholar 

  58. N. Ja. Vilenkin and A.V. Klimyk, Representation of Lie groups and special functions, 4 vols., Kluwer, Dordrecht, 1991–1995.

    Google Scholar 

  59. M. Waldschmidt, Diophantine approximation on linear algebraic groups, Springer, Berlin, 2000.

    MATH  Google Scholar 

  60. A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443–551.

    Article  MATH  MathSciNet  Google Scholar 

Additional References

  • R.E. Borcherds, What is moonshine?, Proceedings of the International Congress of Mathematicians: Berlin 1998, Vol. I, pp. 607–615, Documenta Mathematica, Bielefeld, 1998.

    MathSciNet  Google Scholar 

  • C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over Q, J. Amer. Math. Soc. 14 (2001), 843–939.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coppel, W.A. (2009). Connections with Number Theory. In: Number Theory. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89486-7_13

Download citation

Publish with us

Policies and ethics