Number Theory pp 493-540 | Cite as

Elliptic Functions

  • W. A. Coppel
Part of the Universitext book series (UTX)


Our discussion of elliptic functions may be regarded as an essay in revisionism, since we do not use Liouville’s theorem, Riemann surfaces or the Weierstrassian functions. We wish to show that the methods used by the founding fathers of the subject provide a natural and rigorous approach, which is very well suited for applications.

The work is arranged so that the initial sections aremutually independent, although motivation for each section is provided by those which precede it. To some extent we have also separated the discussion for real and for complex parameters, so that those interested only in the real case may skip the complex one.


Elliptic Function Theta Function Modular Function Elliptic Integral Positive Real Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. [1]
    N.H. Abel, Oeuvres complètes, Tome 1, 2nd ed. (ed. L. Sylow et S. Lie), Grondahl, Christiania, 1881. [Reprinted J. Gabay, Sceaux, 1992]Google Scholar
  2. [2]
    L.V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill, New York, 1979.zbMATHGoogle Scholar
  3. [3]
    N.I. Akhiezer, Elements of the theory of elliptic functions, American Mathematical Society, Providence, R.I., 1990. [English transl. of 2nd Russian edition, 1970]zbMATHGoogle Scholar
  4. [4]
    W. Bartky, Numerical calculation of a generalized complete elliptic integral, Rev. Modern Phys. 10 (1938), 264–269.zbMATHCrossRefGoogle Scholar
  5. [5]
    R.J. Baxter, Exactly solved models in statistical mechanics, Academic Press, London, 1982. [Reprinted, 1989]zbMATHGoogle Scholar
  6. [6]
    A.A. Belavin and V.G. Drinfeld, Triangle equations and simple Lie algebras, Soviet Sci. Rev. Sect. C: Math. Phys. 4 (1984), 93–165. [Reprinted, Harwood, Amsterdam, 1998]MathSciNetGoogle Scholar
  7. [7]
    H.J.M. Bos, C. Kers, F. Oort and D.W. Raven, Poncelet's closure theorem, Exposition. Math. 5 (1987), 289–364.zbMATHMathSciNetGoogle Scholar
  8. [8]
    P.F. Byrd and M.D. Friedman, Handbook of elliptic integrals for engineers and scientists, 2nd ed., Springer, Berlin, 1971.zbMATHGoogle Scholar
  9. [9]
    D.A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. 30 (1984), 275–330.zbMATHMathSciNetGoogle Scholar
  10. [10]
    L. Euler, Opera omnia, Ser. I, Vol. XX (ed. A. Krazer), Leipzig, 1912.Google Scholar
  11. [11]
    M. Falk, Beweis eines Satzes aus der Theorie der elliptischen Functionen, Acta Math. 7 (1885/6), 197–200.CrossRefMathSciNetGoogle Scholar
  12. [12]
    R. Fricke, Elliptische Funktionen, Encyklopädie der Mathematischen Wissenschaften, Band II, Teil 2, pp. 177–348, Teubner, Leipzig, 1921.Google Scholar
  13. [13]
    C.F. Gauss, Werke, Band III, Göttingen, 1866. [Reprinted G. Olms, Hildesheim, 1973]Google Scholar
  14. [14]
    M.L. Glasser and I.J. Zucker, Lattice sums, Theoretical chemistry: Advances and perspectives 5 (1980), 67–139.Google Scholar
  15. [15]
    G.H. Halphen, Traité des fonctions elliptiques et de leurs applications, 3 vols., Gauthier-Villars, Paris, 1886–1891.Google Scholar
  16. [16]
    C.G.J. Jacobi, Gesammelte Werke, Band I (ed. C.W. Borchardt), Berlin, 1881. [Reprinted Chelsea, New York, 1969]Google Scholar
  17. [17]
    V.G. Kac and D.H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), 125–264.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    T. Kasper, Integration in finite terms: the Liouville theory, Math. Mag. 53 (1980), 195–201.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    H. Kober, Dictionary of conformal representations, Dover, New York, 1952.zbMATHGoogle Scholar
  20. [20]
    A. Krazer, Zur Geschichte des Umkehrproblems der Integral, Jahresber. Deutsch. Math.-Verein. 18 (1909), 44–75.zbMATHGoogle Scholar
  21. [21]
    J.L. Lagrange, Oeuvres, t. 2 (ed. J.-A. Serret), Gauthier-Villars, Paris, 1868. [Reprinted G. Olms, Hildesheim, 1973]Google Scholar
  22. [22]
    A.M. Legendre, Traité des fonctions elliptiques et des intégrales Eulériennes, avec des tables pour en faciliter le calcul numérique, Paris, t.1 (1825), t.2 (1826), t.3 (1828). [Microform, Readex Microprint Corporation, New York, 1970]Google Scholar
  23. [23]
    I.G. Macdonald, Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91–143.zbMATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    E. Neher, Jacobis Tripelprodukt-Identität und η-Identitäten in der Theorie affiner Lie-Algebren, Jahresber. Deutsch. Math.-Verein. 87 (1985), 164–181.zbMATHMathSciNetGoogle Scholar
  25. [25]
    M. Rosen, Abel's theorem on the lemniscate, Amer. Math. Monthly 88 (1981), 387–395.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    E. Study, Sphärische Trigonometrie, orthogonale Substitutionen und elliptische Funktionen, Leipzig, 1893.Google Scholar
  27. [27]
    J. Tannery and J. Molk, Éléments de la théorie des fonctions elliptiques, 4 vols., Gauthier-Villars, Paris, 1893–1902. [Reprinted Chelsea, New York, 1972]Google Scholar
  28. [28]
    J. Todd, Applications of transformation theory: a legacy from Zolotarev (1847–1878), Approximation theory and spline functions (ed. S.P. Singh et al.), pp. 207–245, Reidel, Dordrecht, 1984.Google Scholar
  29. [29]
    E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th ed., Cambridge University Press, 1927. [Reprinted, 1996]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • W. A. Coppel
    • 1
  1. 1.GriffithAustralia

Personalised recommendations