Skip to main content

Uniform Distribution and Ergodic Theory

  • Chapter
  • First Online:
Number Theory

Part of the book series: Universitext ((UTX))

  • 4602 Accesses

Abstract

A trajectory of a system which is evolving with time may be said to be ‘recurrent’ if it keeps returning to any neighbourhood, however small, of its initial point, and ‘dense’ if it passes arbitrarily near to every point. It may be said to be ‘uniformly distributed’ if the proportion of time it spends in any region tends asymptotically to the ratio of the volume of that region to the volume of the whole space. In the present chapter these notions will be made precise and some fundamental properties derived. The subject of dynamical systems has its roots in mechanics, but we will be particularly concerned with its applications in number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected References

  1. V.I. Arnold and A. Avez, Ergodic problems of classical mechanics, Benjamin, New York, 1968.

    Google Scholar 

  2. K.I. Babenko, On a problem of Gauss, Soviet Math. Dokl. 19 (1978), 136–140.

    MATH  Google Scholar 

  3. J. Beck, Probabilistic diophantine approximation, I. Kronecker sequences, Ann. of Math. 140 (1994), 451–502.

    MATH  Google Scholar 

  4. J. Beck and W.W.L. Chen, Irregularities of distribution, Cambridge University Press, 1987.

    Google Scholar 

  5. V. Bergelson and A. Leibman, Set polynomials and polynomial extension of the Hales–Jewett theorem, Ann. of Math. 150 (1999), 33–75.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Billingsley, Probability and measure, 3rd ed., Wiley, New York, 1995.

    MATH  Google Scholar 

  7. P. Billingsley, Ergodic theory and information, reprinted, Krieger, Huntington, N.Y., 1978.

    Google Scholar 

  8. G. Brown and W. Moran, Schmidt's conjecture on normality for commuting matrices, Invent. Math. 111 (1993), 449–463.

    Article  MATH  MathSciNet  Google Scholar 

  9. H.E. Buchanan and H.T. Hildebrandt, Note on the convergence of a sequence of functions of a certain type, Ann. of Math. 9 (1908), 123–126.

    Article  MathSciNet  Google Scholar 

  10. K. Chandrasekharan, Exponential sums in the development of number theory, Proc. Steklov Inst. Math. 132 (1973), 3–24.

    MathSciNet  Google Scholar 

  11. Y.-G. Chen, The best quantitative Kronecker's theorem, J. London Math. Soc. (2) 61 (2000), 691–705.

    Article  MATH  MathSciNet  Google Scholar 

  12. I.P. Cornfeld, S.V. Fomin and Ya. G. Sinai, Ergodic theory, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  13. M. Drmota and R.F. Tichy, Sequences, discrepancies and applications, Lecture Notes in Mathematics 1651, Springer, Berlin, 1997.

    MATH  Google Scholar 

  14. I. Dupain and V.T. Sós, On the discrepancy of (nα) sequences, Topics in classical number theory (ed. G. Halász), Vol. I, pp. 355–387, North-Holland, Amsterdam, 1984.

    Google Scholar 

  15. H. Dym and H.P. McKean, Fourier series and integrals, Academic Press, Orlando, FL, 1972.

    MATH  Google Scholar 

  16. P. and T. Ehrenfest, The conceptual foundations of the statistical approach in mechanics, English translation by M.J. Moravcsik, Cornell University Press, Ithaca, 1959. [German original, 1912]

    Google Scholar 

  17. H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, 1981.

    Google Scholar 

  18. H. Furstenberg and Y. Katznelson, A density version of the Hales–Jewett theorem, J. Analyse Math. 57 (1991), 64–119.

    MATH  MathSciNet  Google Scholar 

  19. W.T. Gowers, A new proof of Szemeredi’s theorem, Geom. Funct. Anal. 11 (2001), 465–588.

    Article  MATH  MathSciNet  Google Scholar 

  20. R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey theory, 2nd ed., Wiley, New York, 1990.

    MATH  Google Scholar 

  21. S.W. Graham and G. Kolesnik, Van der Corput’s method of exponential sums, London Math. Soc. Lecture Notes 126, Cambridge University Press, 1991.

    Book  Google Scholar 

  22. P.R. Halmos, Measure theory, 2nd printing, Springer-Verlag, New York, 1974.

    MATH  Google Scholar 

  23. D.M. Hardcastle and K. Khanin, Continued fractions and the d-dimensional Gauss transformation, Comm. Math. Phys. 215 (2001), 487–515.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Jessen and H. Tornehave, Mean motion and zeros of almost periodic functions, Acta Math. 77 (1945), 137–279.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, 1995.

    Google Scholar 

  26. Y. Katznelson and B. Weiss, A simple proof of some ergodic theorems, Israel J. Math. 42 (1982), 291–296.

    Article  MATH  MathSciNet  Google Scholar 

  27. J.H.B. Kemperman, Distributions modulo 1 of slowly changing sequences, Nieuw Arch. Wisk. (3) 21 (1973), 138–163.

    MATH  MathSciNet  Google Scholar 

  28. J.F.C. Kingman, Subadditive processes, Ecole d’Eté de Probabilités de Saint-Flour V-1975 (ed. A. Badrikian), pp. 167–223, Lecture Notes in Mathematics 539, Springer-Verlag, 1976.

    Google Scholar 

  29. U. Krengel, Ergodic theorems, de Gruyter, Berlin, 1985.

    MATH  Google Scholar 

  30. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974.

    MATH  Google Scholar 

  31. J.C. Lagarias, The 3x + 1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3–23.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Loève, Probability theory, 4th ed. in 2 vols., Springer-Verlag, New York, 1978.

    MATH  Google Scholar 

  33. D.H. Mayer, On the thermodynamic formalism for the Gauss map, Comm. Math. Phys. 130 (1990), 311–333.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Mills, A quintessential proof of van der Waerden’s theorem on arithmetic progressions, Discrete Math. 47 (1983), 117–120.

    Article  MathSciNet  Google Scholar 

  35. H.L. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics 84, American Mathematical Society, Providence, R.I., 1994.

    MATH  Google Scholar 

  36. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bull. Amer. Math. Soc. 84 (1978), 957–1041.

    Article  MATH  MathSciNet  Google Scholar 

  37. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS–NSF Regional Conference Series in Applied Mathematics 63, SIAM, Philadelphia, 1992.

    MATH  Google Scholar 

  38. H. Niederreiter and W. Philipp, Berry–Esseen bounds and a theorem of Erdös and Turán on uniform distribution mod 1, Duke Math. J. 40 (1973), 633–649.

    Article  MATH  MathSciNet  Google Scholar 

  39. K. Petersen, Ergodic theory, Cambridge University Press, 1983.

    Google Scholar 

  40. W. Philipp and O.P. Stackelberg, Zwei Grenzwertsätze für Kettenbrüche, Math. Ann. 181 (1969), 152–156.

    Article  MATH  MathSciNet  Google Scholar 

  41. H. Poincaré, Sur la théorie cinétique des gaz, Oeuvres, t. X, pp. 246–263, Gauthier-Villars, Paris, 1954.

    Google Scholar 

  42. F. Riesz and B. Sz.-Nagy, Functional analysis, English transl. by L.F. Boron, Ungar, New York, 1955.

    Google Scholar 

  43. A. Rockett and P. Szusz, Continued fractions, World Scientific, Singapore, 1992.

    MATH  Google Scholar 

  44. W. Rudin, Principles of mathematical analysis, 3rd ed., McGraw-Hill, New York, 1976.

    MATH  Google Scholar 

  45. D. Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58.

    Article  MATH  MathSciNet  Google Scholar 

  46. S. Saks, Theory of the integral, 2nd revised ed., English transl. by L.C. Young, reprinted, Dover, New York, 1964.

    Google Scholar 

  47. S. Shelah, Primitive recursion bounds for van der Waerden numbers, J. Amer. Math. Soc. 1 (1988), 683–697.

    MATH  MathSciNet  Google Scholar 

  48. J.M. Steele, Kingman’s subadditive ergodic theorem, Ann. Inst. H. Poincaré Sect. B 25 (1989), 93–98.

    MATH  MathSciNet  Google Scholar 

  49. M.H. Stone, A generalized Weierstrass approximation theorem, Studies in modern analysis (ed. R.C. Buck), pp. 30–87, Mathematical Association of America, 1962.

    Google Scholar 

  50. B.L. van der Waerden, How the proof of Baudet’s conjecture was found, Studies in Pure Mathematics (ed. L. Mirsky), pp. 251–260, Academic Press, London, 1971.

    Google Scholar 

  51. P. Walters, An introduction to ergodic theory, Springer-Verlag, New York, 1982.

    MATH  Google Scholar 

  52. H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313–352. [Reprinted in Selecta Hermann Weyl, pp. 111–147, Birkhäuser, Basel, 1956 and in Hermann Weyl, Gesammelte Abhandlungen (ed. K. Chandrasekharan), Band I, pp. 563–599, Springer-Verlag, Berlin, 1968]

    Article  MATH  MathSciNet  Google Scholar 

  53. E. Wirsing, On the theorem of Gauss–Kusmin–Lévy and a Frobenius type theorem for function spaces, Acta Arith. 24 (1974), 507–528.

    MATH  MathSciNet  Google Scholar 

  54. R.J. Zimmer, Ergodic theory and semi-simple groups, Birkhäuser, Boston, 1984.

    Google Scholar 

Additional Reference

  • B. Kra, The Green-Tao theorem on arithmetic progressions in the primes: an ergodic point of view, Bull. Amer. Math. Soc. (N.S.) 43 (2006), 3–23.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Coppel, W.A. (2009). Uniform Distribution and Ergodic Theory. In: Number Theory. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89486-7_11

Download citation

Publish with us

Policies and ethics