Skip to main content

Drug Resistance and the Tumor Suppressor p53: The Paradox of Wild-Type Genotype in Chemorefractory Cancers

  • Chapter
  • First Online:
Drug Resistance in Cancer Cells

Abstract

The tumor suppressor p53 has a central role in drug-induced cell death. Its mutation in about 50% of all cancers is a source of drug resistance from the loss in apoptotic signaling, but loss of apoptosis is also found in many resistant tumors that retain wild-type p53 and this represents a paradox. Indeed, resistance seems to be substantially greater with wild-type p53 present as compared to mutant p53. From the perspective of response and survival in cancer patients, responses are observed independent of p53 gene status, but the 5-year survival rate is significantly greater when wild-type p53 is present. This indicates that an effort to increase the response rate in cancers having the wild-type p53 should translate into an increase in the survival rate. To accomplish this goal, an understanding of the mechanisms contributing to resistance in wild-type p53 cancers becomes important. These mechanisms are multifactorial and include loss in DNA damage recognition, alterations in post-translational modification of p53, failure to activate p53 due to target gene silencing, and failure to transrepress antiapoptotic genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan, L. A., Duhig, T., Read, M., and Fried, M. 2000. The p21(WAF1/CIP1) promoter is methylated in Rat-1 cells: stable restoration of p53-dependent p21(WAF1/CIP1) expression after transfection of a genomic clone containing the p21(WAF1/CIP1) gene. Mol. Cell Biol. 20:1291–1298.

    Article  PubMed  CAS  Google Scholar 

  • Antoni, L., Sodha, N., Collins, I., and Garrett, M. D. 2007. CHK2 kinase: cancer susceptibility and cancer therapy – two sides of the same coin? Nat. Rev. Cancer 7:925–936.

    Article  PubMed  CAS  Google Scholar 

  • Aquilina, G., Ceccotti, S., Martinelli, S., Soddu, S., Crescenzi, M., Branch, P., Karran, P., and Bignami, M. 2000. Mismatch repair and p53 independently affect sensitivity to N-(2- chloroethyl)-N'-cyclohexyl-N-nitrosourea. Clin. Cancer Res. 6:671–680.

    PubMed  CAS  Google Scholar 

  • Attardi, L. D., Lowe, S. W., Brugarolas, J., and Jacks, T. 1996. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 15:3693–3701.

    PubMed  CAS  Google Scholar 

  • Baldassarre, G., Belletti, B., Battista, S., Nicoloso, M. S., Pentimalli, F., Fedele, M., Croce, C. M., and Fusco, A. 2005. HMGA1 protein expression sensitizes cells to cisplatin-induced cell death. Oncogene 24:6809–6819.

    Article  PubMed  CAS  Google Scholar 

  • Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677.

    Article  PubMed  CAS  Google Scholar 

  • Barboza, J. A., Liu, G., Ju, Z., El Naggar, A. K., and Lozano, G. 2006. p21 delays tumor onset by preservation of chromosomal stability. Proc. Natl. Acad. Sci. U. S. A 103:19842–19847.

    Google Scholar 

  • Bargonetti, J., and Manfredi, J. J. 2002. Multiple roles of the tumor suppressor p53. Curr. Opin. Oncol. 14:86–91.

    Article  PubMed  CAS  Google Scholar 

  • Bartussek, C., Naumann, U., and Weller, M. 1999. Accumulation of mutant p53(V143A) modulates the growth, clonogenicity, and radiochemosensitivity of malignant glioma cells independent of endogenous p53 status. Exp. Cell Res. 253:432–439.

    Article  PubMed  CAS  Google Scholar 

  • Berns, E. M., Foekens, J. A., Vossen, R., Look, M. P., Devilee, P., Henzen-Logmans, S. C., van Staveren, I. L., van Putten, W. L., Inganas, M., Meijer-van Gelder, M. E., Cornelisse, C., Claassen, C. J., Portengen, H., Bakker, B., and Klijn, J. G. 2000. Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer. Cancer Res. 60:2155–2162.

    PubMed  CAS  Google Scholar 

  • Blagosklonny, M. V., Giannakakou, P., Romanova, L. Y., Ryan, K. M., Vousden, K. H., and Fojo, T. 2001. Inhibition of HIF-1- and wild-type p53-stimulated transcription by codon Arg175 p53 mutants with selective loss of functions. Carcinogenesis 22:861–867.

    Article  PubMed  CAS  Google Scholar 

  • Blandino, G., Levine, A. J., and Oren, M. 1999. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, C. R., Zhu, S., Ogawa, H., Ogawa, T., Ubell, M., Narayan, A., Johnson, G., Wolf, G. T., Fisher, S. G., and Carey, T. E. 2003. P53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck 25:654–661.

    Article  PubMed  Google Scholar 

  • Brezniceanu, M. L., Volp, K., Bosser, S., Solbach, C., Lichter, P., Joos, S., and Zornig, M. 2003. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J. 17:1295–1297.

    PubMed  CAS  Google Scholar 

  • Brown, E. J., and Baltimore, D. 2000. ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev. 14:397–402.

    PubMed  CAS  Google Scholar 

  • Burdak-Rothkamm, S., Rothkamm, K., and Prise, K. M. 2008. ATM acts downstream of ATR in the DNA damage response signaling of bystander cells. Cancer Res. 68:7059–7065.

    Article  PubMed  CAS  Google Scholar 

  • Burger, H., Nooter, K., Boersma, A. W., Kortland, C. J., and Stoter, G. 1998. Expression of p53, Bcl-2 and Bax in cisplatin-induced apoptosis in testicular germ cell tumour cell lines. Br. J. Cancer 77:1562–1567.

    Article  PubMed  CAS  Google Scholar 

  • Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D. 1998. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679.

    Article  PubMed  CAS  Google Scholar 

  • Chaney, S. G., Campbell, S. L., Bassett, E., and Wu, Y. 2005. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit Rev. Oncol. Hematol. 53:3–11.

    Article  PubMed  Google Scholar 

  • Chaney, S. G., and Vaisman, A. 1999. Specificity of platinum-DNA adduct repair. J. Inorg. Biochem. 77:71–81.

    Article  PubMed  CAS  Google Scholar 

  • Chene, P. 2003. Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer 3:102–109.

    Article  PubMed  CAS  Google Scholar 

  • Cliby, W. A., Roberts, C. J., Cimprich, K. A., Stringer, C. M., Lamb, J. R., Schreiber, S. L., and Friend, S. H. 1998. Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints. EMBO J. 17:159–169.

    Article  PubMed  CAS  Google Scholar 

  • Damia, G., Filiberti, L., Vikhanskaya, F., Carrassa, L., Taya, Y., D'Incalci, M., and Broggini, M. 2001. Cisplatinum and taxol induce different patterns of p53 phosphorylation. Neoplasia 3:10–16.

    Article  PubMed  CAS  Google Scholar 

  • Delavaine, L., and La Thangue, N. B. 1999. Control of E2F activity by p21Waf1/Cip1. Oncogene 18:5381–5392.

    Article  PubMed  CAS  Google Scholar 

  • Delmastro, D. A., Li, J., Vaisman, A., Solle, M., and Chaney, S. G. 1997. DNA damage inducible-gene expression following platinum treatment in human ovarian carcinoma cell lines. Cancer Chemother. Pharmacol. 39:245–253.

    PubMed  CAS  Google Scholar 

  • Dressman, H. K., Berchuck, A., Chan, G., Zhai, J., Bild, A., Sayer, R., Cragun, J., Clarke, J., Whitaker, R. S., Li, L., Gray, J., Marks, J., Ginsburg, G. S., Potti, A., West, M., Nevins, J. R., and Lancaster, J. M. 2007. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J. Clin. Oncol. 25:517–525.

    Article  PubMed  CAS  Google Scholar 

  • el Deiry, W. S. 2003. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 22:7486–7495.

    Article  PubMed  CAS  Google Scholar 

  • Fan, S., Chang, J. K., Smith, M. L., Duba, D., Fornace, A. J., Jr., and O'Connor, P. M. 1997. Cells lacking CIP1/WAF1 genes exhibit preferential sensitivity to cisplatin and nitrogen mustard. Oncogene 14:2127–2136.

    Article  PubMed  CAS  Google Scholar 

  • Fan, S., Smith, M. L., Rivet, D. J., Duba, D., Zhan, Q., Kohn, K. W., Fornace, A. J., Jr., and O'Connor, P. M. 1995. Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 55:1649–1654.

    PubMed  CAS  Google Scholar 

  • Fink, D., Aebi, S., and Howell, S. B. 1998. The role of DNA mismatch repair in drug resistance. Clin. Cancer Res. 4:1–6.

    PubMed  CAS  Google Scholar 

  • Fojta, M., Pivonkova, H., Brazdova, M., Kovarova, L., Palecek, E., Pospisilova, S., Vojtesek, B., Kasparkova, J., and Brabec, V. 2003. Recognition of DNA modified by antitumor cisplatin by "latent" and "active" protein p53. Biochem. Pharmacol. 65:1305–1316.

    Article  PubMed  CAS  Google Scholar 

  • Friess, H., Lu, Z., Graber, H. U., Zimmermann, A., Adler, G., Korc, M., Schmid, R. M., and Buchler, M. W. 1998. Bax, but not bcl-2, influences the prognosis of human pancreatic cancer. Gut 43:414–421.

    Article  PubMed  CAS  Google Scholar 

  • Gartel, A. L., and Radhakrishnan, S. K. 2005. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 65:3980–3985.

    Article  PubMed  CAS  Google Scholar 

  • Gartel, A. L., and Tyner, A. L. 2002. The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol. Cancer Ther. 1:639–649.

    PubMed  CAS  Google Scholar 

  • Geisler, S., Lonning, P. E., Aas, T., Johnsen, H., Fluge, O., Haugen, D. F., Lillehaug, J. R., Akslen, L. A., and Borresen-Dale, A. L. 2001. Influence of TP53 gene alterations and c-erbB-2 expression on the response to treatment with doxorubicin in locally advanced breast cancer. Cancer Res. 61:2505–2512.

    PubMed  CAS  Google Scholar 

  • Giaccone, G. 2000. Clinical perspectives on platinum resistance. Drugs 59 Suppl 4:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Gottifredi, V., Karni-Schmidt, O., Shieh, S. S., and Prives, C. 2001. p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol. Cell Biol. 21:1066–1076.

    Article  PubMed  CAS  Google Scholar 

  • Hagopian, G. S., Mills, G. B., Khokhar, A. R., Bast, R. C., Jr., and Siddik, Z. H. 1999. Expression of p53 in cisplatin-resistant ovarian cancer cell lines: modulation with the novel platinum analogue (1R, 2R- diaminocyclohexane)(trans-diacetato)(dichloro)-platinum(IV). Clin. Cancer Res. 5:655–663.

    PubMed  CAS  Google Scholar 

  • Harris, S. L., and Levine, A. J. 2005. The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908.

    Article  PubMed  CAS  Google Scholar 

  • Hastak, K., Agarwal, M. K., Mukhtar, H., and Agarwal, M. L. 2005. Ablation of either p21 or Bax prevents p53-dependent apoptosis induced by green tea polyphenol epigallocatechin-3-gallate. FASEB J. 19:789–791.

    PubMed  CAS  Google Scholar 

  • Hawkins, D. S., Demers, G. W., and Galloway, D. A. 1996. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. 56:892–898.

    PubMed  CAS  Google Scholar 

  • He, Q., Liang, C. H., and Lippard, S. J. 2000. Steroid hormones induce HMG1 overexpression and sensitize breast cancer cells to cisplatin and carboplatin. Proc. Natl. Acad. Sci. U. S. A 97:5768–5772.

    Google Scholar 

  • Helleman, J., Jansen, M. P., Span, P. N., van Staveren, I. L., Massuger, L. F., Meijer-van Gelder, M. E., Sweep, F. C., Ewing, P. C., van der Burg, M. E., Stoter, G., Nooter, K., and Berns, E. M. 2006. Molecular profiling of platinum resistant ovarian cancer. Int. J. Cancer 118:1963–1971.

    Article  PubMed  CAS  Google Scholar 

  • Helton, E. S., and Chen, X. 2007. p53 modulation of the DNA damage response. J. Cell Biochem. 100:883–896.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, K. H., Chong, M. J., Kapsetaki, M., Morgan, J. I., and McKinnon, P. J. 1998. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280:1089–1091.

    Article  PubMed  CAS  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B., and Harris, C. C. 1991. p53 mutations in human cancers. Science 253:49–53.

    Article  PubMed  CAS  Google Scholar 

  • Horn, H. F., and Vousden, K. H. 2007. Coping with stress: multiple ways to activate p53. Oncogene 26:1306–1316.

    Article  PubMed  CAS  Google Scholar 

  • Iliakis, G., Wang, Y., Guan, J., and Wang, H. 2003. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22:5834–5847.

    Article  PubMed  CAS  Google Scholar 

  • Imamura, T., Izumi, H., Nagatani, G., Ise, T., Nomoto, M., Iwamoto, Y., and Kohno, K. 2001. Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J. Biol. Chem. 276:7534–7540.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, R. S., Baldwin, R. L., Fang, J., Browning, D., Karlan, B. Y., Gasson, J. C., and Chang, D. D. 2000. Differential gene expression between normal and tumor-derived ovarian epithelial cells. Cancer Res. 60:6744–6749.

    PubMed  CAS  Google Scholar 

  • Jack, M. T., Woo, R. A., Hirao, A., Cheung, A., Mak, T. W., and Lee, P. W. 2002. Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc. Natl. Acad. Sci. U. S. A 99:9825–9829.

    Google Scholar 

  • Jayaraman, L., Moorthy, N. C., Murthy, K. G., Manley, J. L., Bustin, M., and Prives, C. 1998. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev. 12:462–472.

    Article  PubMed  CAS  Google Scholar 

  • Jekunen, A. P., Christen, R. D., Shalinsky, D. R., and Howell, S. B. 1994. Synergistic interaction between cisplatin and taxol in human ovarian carcinoma cells in vitro. Br. J. Cancer 69:299–306.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S. W., Laub, P. B., Beesley, J. S., Ozols, R. F., and Hamilton, T. C. 1997. Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res 57:850–856.

    PubMed  CAS  Google Scholar 

  • Kandioler-Eckersberger, D., Ludwig, C., Rudas, M., Kappel, S., Janschek, E., Wenzel, C., Schlagbauer-Wadl, H., Mittlbock, M., Gnant, M., Steger, G., and Jakesz, R. 2000. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin. Cancer Res. 6:50–56.

    PubMed  CAS  Google Scholar 

  • Kapoor, M., Hamm, R., Yan, W., Taya, Y., and Lozano, G. 2000. Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation. Oncogene 19:358–364.

    Article  PubMed  CAS  Google Scholar 

  • Kastan, M. B. 2007. Wild-type p53: tumors can't stand it. Cell 128:837–840.

    Article  PubMed  CAS  Google Scholar 

  • Kester, H. A., Sonneveld, E., van der Saag, P. T., and van der, B. B. 2003. Prolonged progestin treatment induces the promoter of CDK inhibitor p21 Cip1,Waf1 through activation of p53 in human breast and endometrial tumor cells. Exp. Cell Res. 284:264–273.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B. J., Ryu, S. W., and Song, B. J. 2006. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J. Biol. Chem. 281:21256–21265.

    Article  PubMed  CAS  Google Scholar 

  • King, T. C., Akerley, W., Fan, A. C., Moore, T., Mangray, S., Hsiu, C. M., and Safran, H. 2000. p53 mutations do not predict response to paclitaxel in metastatic nonsmall cell lung carcinoma. Cancer 89:769–773.

    Article  PubMed  CAS  Google Scholar 

  • Knudson, C. M., Johnson, G. M., Lin, Y., and Korsmeyer, S. J. 2001. Bax accelerates tumorigenesis in p53-deficient mice. Cancer Res. 61:659–665.

    PubMed  CAS  Google Scholar 

  • Kojima, K., Konopleva, M., McQueen, T., O'Brien, S., Plunkett, W., and Andreeff, M. 2006. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108:993–1000.

    Article  PubMed  CAS  Google Scholar 

  • Krajewski, S., Blomqvist, C., Franssila, K., Krajewska, M., Wasenius, V. M., Niskanen, E., Nordling, S., and Reed, J. C. 1995. Reduced expression of proapoptotic gene BAX is associated with poor response rates to combination chemotherapy and shorter survival in women with metastatic breast adenocarcinoma. Cancer Res. 55:4471–4478.

    PubMed  CAS  Google Scholar 

  • Lage, H., and Dietel, M. 1999. Involvement of the DNA mismatch repair system in antineoplastic drug resistance. J. Cancer Res. Clin. Oncol. 125:156–165.

    Article  PubMed  CAS  Google Scholar 

  • Lagger, G., Doetzlhofer, A., Schuettengruber, B., Haidweger, E., Simboeck, E., Tischler, J., Chiocca, S., Suske, G., Rotheneder, H., Wintersberger, E., and Seiser, C. 2003. The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol. Cell Biol. 23:2669–2679.

    Article  PubMed  CAS  Google Scholar 

  • Lavarino, C., Pilotti, S., Oggionni, M., Gatti, L., Perego, P., Bresciani, G., Pierotti, M. A., Scambia, G., Ferrandina, G., Fagotti, A., Mangioni, C., Lucchini, V., Vecchione, F., Bolis, G., Scarfone, G., and Zunino, F. 2000. p53 gene status and response to platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma. J. Clin. Oncol. 18:3936–3945.

    PubMed  CAS  Google Scholar 

  • Lavin, M. F., and Gueven, N. 2006. The complexity of p53 stabilization and activation. Cell Death. Differ. 13:941–950.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. H., and Lozano, G. 2006. Regulation of the p53-MDM2 pathway by 14-3-3 sigma and other proteins. Semin. Cancer Biol. 16:225–234.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, A. A., and Eastman, A. 2007. p53-based cancer therapies: Is defective p53 the Achilles heel of the tumor? Carcinogenesis 28:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Ramamurthi, K., Mishima, M., Kondo, A., Christen, R. D., and Howell, S. B. 2001. P53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res. 61:1508–1516.

    PubMed  CAS  Google Scholar 

  • Lincet, H., Poulain, L., Remy, J. S., Deslandes, E., Duigou, F., Gauduchon, P., and Staedel, C. 2000. The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett. 161:17–26.

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., and Lozano, G. 2005. p21 stability: linking chaperones to a cell cycle checkpoint. Cancer Cell 7:113–114.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S., Bishop, W. R., and Liu, M. 2003. Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist. Updat. 6:183–195.

    Article  PubMed  CAS  Google Scholar 

  • Lohr, K., Moritz, C., Contente, A., and Dobbelstein, M. 2003. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem. 278:32507–32516.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., Lin, F. T., and Lin, W. C. 2004. ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol. Cell Biol. 24:6430–6444.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Caballero, J., Flores, J. M., Garcia-Palencia, P., and Serrano, M. 2001. Tumor susceptibility of p21(Waf1/Cip1)-deficient mice. Cancer Res. 61:6234–6238.

    PubMed  CAS  Google Scholar 

  • Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., III, Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P., and Elledge, S. J. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, F., Honecker, F., Looijenga, L. H., and Bokemeyer, C. 2003. Towards an understanding of the biological basis of response to cisplatin-based chemotherapy in germ-cell tumors. Ann. Oncol. 14:825–832.

    Article  PubMed  CAS  Google Scholar 

  • McCurrach, M. E., Connor, T. M., Knudson, C. M., Korsmeyer, S. J., and Lowe, S. W. 1997. Bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. Proc. Natl. Acad. Sci. U. S. A 94:2345–2349.

    Google Scholar 

  • Miquel, C., Borrini, F., Grandjouan, S., Auperin, A., Viguier, J., Velasco, V., Duvillard, P., Praz, F., and Sabourin, J. C. 2005. Role of bax mutations in apoptosis in colorectal cancers with microsatellite instability. Am. J. Clin. Pathol. 123:562–570.

    Article  PubMed  CAS  Google Scholar 

  • Mujoo, K., Watanabe, M., Nakamura, J., Khokhar, A. R., and Siddik, Z. H. 2003. Status of p53 phosphorylation and function in sensitive and resistant human cancer models exposed to platinum-based DNA damaging agents. J. Cancer Res. Clin. Oncol. 129:709–718.

    Article  PubMed  CAS  Google Scholar 

  • Nagatani, G., Nomoto, M., Takano, H., Ise, T., Kato, K., Imamura, T., Izumi, H., Makishima, K., and Kohno, K. 2001. Transcriptional activation of the human HMG1 gene in cisplatin- resistant human cancer cells. Cancer Res. 61:1592–1597.

    PubMed  CAS  Google Scholar 

  • O’Connor, P. M., Jackman, J., Bae, I., Myers, T. G., Fan, S., Mutoh, M., Scudiero, D. A., Monks, A., Sausville, E. A., Weinstein, J. N., Friend, S., Fornace, A. J. Jr., and Kohn, K. W. 1997. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57:4285–4300.

    PubMed  Google Scholar 

  • Ozols, R. F. 1991. Ovarian cancer: new clinical approaches. Cancer Treat. Rev 18 Suppl A:77–83.

    Article  PubMed  Google Scholar 

  • Perego, P., Gatti, L., Righetti, S. C., Beretta, G. L., Carenini, N., Corna, E., Dal Bo, L., Tinelli, S., Colangelo, D., Leone, R., Apostoli, P., Lombardi, L., Beggiolin, G., Piazzoni, L., and Zunino, F. 2003. Development of resistance to a trinuclear platinum complex in ovarian carcinoma cells. Int. J. Cancer 105:617–624.

    Article  PubMed  CAS  Google Scholar 

  • Pietenpol, J. A., and Stewart, Z. A. 2002. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481.

    Article  PubMed  Google Scholar 

  • Poole, A. J., Heap, D., Carroll, R. E., and Tyner, A. L. 2004. Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene 23:8128–8134.

    Article  PubMed  CAS  Google Scholar 

  • Puca, R., Nardinocchi, L., Gal, H., Rechavi, G., Amariglio, N., Domany, E., Notterman, D. A., Scarsella, M., Leonetti, C., Sacchi, A., Blandino, G., Givol, D., and D'Orazi, G. 2008. Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown. Cancer Res. 68:3707–3714.

    Article  PubMed  CAS  Google Scholar 

  • Qin, L. F., and Ng, I. O. 2001. Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells. Cancer Lett. 172:7–15.

    Article  PubMed  CAS  Google Scholar 

  • Reles, A., Wen, W. H., Schmider, A., Gee, C., Runnebaum, I. B., Kilian, U., Jones, L. A., El Naggar, A., Minguillon, C., Schonborn, I., Reich, O., Kreienberg, R., Lichtenegger, W., and Press, M. F. 2001. Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin. Cancer Res. 7:2984–2997.

    PubMed  CAS  Google Scholar 

  • Righetti, S. C., Della, T. G., Pilotti, S., Menard, S., Ottone, F., Colnaghi, M. I., Pierotti, M. A., Lavarino, C., Cornarotti, M., Oriana, S., Bohm, S., Bresciani, G. L., Spatti, G., and Zunino, F. 1996. A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 56:689–693.

    PubMed  CAS  Google Scholar 

  • Roberts, D., Schick, J., Conway, S., Biade, S., Laub, P. B., Stevenson, J. P., Hamilton, T. C., O'Dwyer, P. J., and Johnson, S. W. 2005. Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells. Br. J. Cancer 92:1149–1158.

    Article  PubMed  CAS  Google Scholar 

  • Roemer, K. 1999. Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol. Chem. 380:879–887.

    Article  PubMed  CAS  Google Scholar 

  • Roman-Gomez, J., Castillejo, J. A., Jimenez, A., Gonzalez, M. G., Moreno, F., Rodriguez, M. C., Barrios, M., Maldonado, J., and Torres, A. 2002. 5' CpG island hypermethylation is associated with transcriptional silencing of the p21(CIP1/WAF1/SDI1) gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99:2291–2296.

    Article  PubMed  CAS  Google Scholar 

  • Rose, S. L., Goodheart, M. J., DeYoung, B. R., Smith, B. J., and Buller, R. E. 2003. p21 expression predicts outcome in p53-null ovarian carcinoma. Clin. Cancer Res. 9:1028–1032.

    PubMed  CAS  Google Scholar 

  • Samuel, T., Weber, H. O., and Funk, J. O. 2002. Linking DNA damage to cell cycle checkpoints. Cell Cycle 1:162–168.

    Article  PubMed  CAS  Google Scholar 

  • Sarkis, A. S., Bajorin, D. F., Reuter, V. E., Herr, H. W., Netto, G., Zhang, Z. F., Schultz, P. K., Cordon-Cardo, C., and Scher, H. I. 1995. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J. Clin. Oncol. 13: 1384–1390.

    PubMed  CAS  Google Scholar 

  • Schmidt, M., Bachhuber, A., Victor, A., Steiner, E., Mahlke, M., Lehr, H. A., Pilch, H., Weikel, W., and Knapstein, P. G. 2003. p53 expression and resistance against paclitaxel in patients with metastatic breast cancer. J. Cancer Res. Clin. Oncol. 129:295–302.

    PubMed  CAS  Google Scholar 

  • Schuler, M., and Green, D. R. 2005. Transcription, apoptosis and p53: catch-22. Trends Genet. 21:182–187.

    Article  PubMed  CAS  Google Scholar 

  • Scott, S. L., Earle, J. D., and Gumerlock, P. H. 2003. Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation. Cancer Res. 63:7190–7196.

    PubMed  CAS  Google Scholar 

  • Shats, I., Milyavsky, M., Tang, X., Stambolsky, P., Erez, N., Brosh, R., Kogan, I., Braunstein, I., Tzukerman, M., Ginsberg, D., and Rotter, V. 2004. p53-dependent down-regulation of telomerase is mediated by p21waf1. J. Biol. Chem. 279:50976–50985.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Kondo, Y., Hamilton, S. R., Rashid, A., and Issa, J. P. 2003. P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology 124:626–633.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. 2000. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14:289–300.

    PubMed  CAS  Google Scholar 

  • Shoji, T., Tanaka, F., Takata, T., Yanagihara, K., Otake, Y., Hanaoka, N., Miyahara, R., Nakagawa, T., Kawano, Y., Ishikawa, S., Katakura, H., and Wada, H. 2002. Clinical significance of p21 expression in non-small-cell lung cancer. J. Clin. Oncol. 20:3865–3871.

    Article  PubMed  CAS  Google Scholar 

  • Siddik, Z. H., Mims, B., Lozano, G., and Thai, G. 1998. Independent pathways of p53 induction by cisplatin and X-rays in a cisplatin-resistant ovarian tumor cell line. Cancer Res. 58:698–703.

    PubMed  CAS  Google Scholar 

  • Soussi, T. 2000. The p53 tumor suppressor gene: from molecular biology to clinical investigation. Ann. N. Y. Acad. Sci. 910:121–137.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, J. J., White, J. T., Yan, X., Collins, S., Drescher, C. W., Urban, N. D., Hood, L., and Lin, B. 2006. Proteins associated with Cisplatin resistance in ovarian cancer cells identified by quantitative proteomic technology and integrated with mRNA expression levels. Mol. Cell Proteomics. 5:433–443.

    PubMed  CAS  Google Scholar 

  • Stojic, L., Brun, R., and Jiricny, J. 2004. Mismatch repair and DNA damage signalling. DNA Repair (Amst) 3:1091–1101.

    Article  CAS  Google Scholar 

  • Sturm, I., Kohne, C. H., Wolff, G., Petrowsky, H., Hillebrand, T., Hauptmann, S., Lorenz, M., Dorken, B., and Daniel, P. T. 1999. Analysis of the p53/BAX pathway in colorectal cancer: low BAX is a negative prognostic factor in patients with resected liver metastases. J. Clin. Oncol. 17:1364–1374.

    PubMed  CAS  Google Scholar 

  • Sturm, I., Papadopoulos, S., Hillebrand, T., Benter, T., Luck, H. J., Wolff, G., Dorken, B., and Daniel, P. T. 2000. Impaired BAX protein expression in breast cancer: mutational analysis of the BAX and the p53 gene. Int. J. Cancer 87:517–521.

    Article  PubMed  CAS  Google Scholar 

  • Tang, X., Milyavsky, M., Shats, I., Erez, N., Goldfinger, N., and Rotter, V. 2004. Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 23:5759–5769.

    Article  PubMed  CAS  Google Scholar 

  • Theard, D., Coisy, M., Ducommun, B., Concannon, P., and Darbon, J. M. 2001. Etoposide and adriamycin but not genistein can activate the checkpoint kinase Chk2 independently of ATM/ATR. Biochem. Biophys. Res. Commun. 289:1199–1204.

    Article  PubMed  CAS  Google Scholar 

  • Thornborrow, E. C., and Manfredi, J. J. 2001. The tumor suppressor protein p53 requires a cofactor to activate transcriptionally the human BAX promoter. J. Biol. Chem. 276:15598–15608.

    Article  PubMed  CAS  Google Scholar 

  • Toledo, F., and Wahl, G. M. 2006. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6:909–923.

    Article  PubMed  CAS  Google Scholar 

  • Troester, M. A., Hoadley, K. A., Sorlie, T., Herbert, B. S., Borresen-Dale, A. L., Lonning, P. E., Shay, J. W., Kaufmann, W. K., and Perou, C. M. 2004. Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res. 64:4218–4226.

    Article  PubMed  CAS  Google Scholar 

  • Vaisman, A., Varchenko, M., Umar, A., Kunkel, T. A., Risinger, J. I., Barrett, J. C., Hamilton, T. C., and Chaney, S. G. 1998. The role of hMLH1, hMSH3, and hMSH6 defects in cisplatin and oxaliplatin resistance: correlation with replicative bypass of platinum- DNA adducts. Cancer Res. 58:3579–3585.

    PubMed  CAS  Google Scholar 

  • van der Zee, A. G., Hollema, H., Suurmeijer, A. J., Krans, M., Sluiter, W. J., Willemse, P. H., Aalders, J. G., and de Vries, E. G. 1995. Value of P-glycoprotein, glutathione S-transferase pi, c-erbB-2, and p53 as prognostic factors in ovarian carcinomas. J. Clin. Oncol. 13:70–78.

    PubMed  Google Scholar 

  • Vekris, A., Meynard, D., Haaz, M. C., Bayssas, M., Bonnet, J., and Robert, J. 2004. Molecular determinants of the cytotoxicity of platinum compounds: the contribution of in silico research. Cancer Res. 64:356–362.

    Article  PubMed  CAS  Google Scholar 

  • Villunger, A., Michalak, E. M., Coultas, L., Mullauer, F., Bock, G., Ausserlechner, M. J., Adams, J. M., and Strasser, A. 2003. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302:1036–1038.

    Article  PubMed  CAS  Google Scholar 

  • Vousden, K. H., and Lu, X. 2002. Live or let die: the cell's response to p53. Nat. Rev. Cancer 2:594–604.

    Article  PubMed  CAS  Google Scholar 

  • Willis, A., Jung, E. J., Wakefield, T., and Chen, X. 2004. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 23:2330–2338.

    Article  PubMed  CAS  Google Scholar 

  • Wright, J. A., Keegan, K. S., Herendeen, D. R., Bentley, N. J., Carr, A. M., Hoekstra, M. F., and Concannon, P. 1998. Protein kinase mutants of human ATR increase sensitivity to UV and ionizing radiation and abrogate cell cycle checkpoint control. Proc. Natl. Acad. Sci. U. S. A 95:7445–7450.

    Google Scholar 

  • Wu, Q., Kirschmeier, P., Hockenberry, T., Yang, T. Y., Brassard, D. L., Wang, L., McClanahan, T., Black, S., Rizzi, G., Musco, M. L., Mirza, A., and Liu, S. 2002. Transcriptional regulation during p21WAF1/CIP1-induced apoptosis in human ovarian cancer cells. J. Biol. Chem. 277:36329–36337.

    Article  PubMed  CAS  Google Scholar 

  • Zaffaroni, N., Silvestrini, R., Orlandi, L., Bearzatto, A., Gornati, D., and Villa, R. 1998. Induction of apoptosis by taxol and cisplatin and effect on cell cycle- related proteins in cisplatin-sensitive and -resistant human ovarian cells. Br. J. Cancer 77:1378–1385.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Zhou, W., Velculescu, V. E., Kern, S. E., Hruban, R. H., Hamilton, S. R., Vogelstein, B., and Kinzler, K. W. 1997. Gene expression profiles in normal and cancer cells. Science 276:1268–1272.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, N., Song, Q., Lu, H., and Lavin, M. F. 1996. Induction of p53 and increased sensitivity to cisplatin in ataxia-telangiectasia cells. Oncogene 13:655–659.

    PubMed  CAS  Google Scholar 

  • Zhang, P., Gao, W., Li, H., Reed, E., and Chen, F. 2005a. Inducible degradation of checkpoint kinase 2 links to cisplatin-induced resistance in ovarian cancer cells. Biochem. Biophys. Res. Commun. 328:567–572.

    Article  CAS  Google Scholar 

  • Zhang, P., Wang, J., Gao, W., Yuan, B. Z., Rogers, J., and Reed, E. 2004. CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol. Cancer 3:14.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Ma, W. Y., Kaji, A., Bode, A. M., and Dong, Z. 2002. Requirement of ATM in UVA-induced signaling and apoptosis. J. Biol. Chem. 277:3124–3131.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. W., Otterness, D. M., Chiang, G. G., Xie, W., Liu, Y. C., Mercurio, F., and Abraham, R. T. 2005b. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol. Cell 19:607–618.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, B. B., and Sausville, E. A. 2003. Drug discovery targeting Chk1 and Chk2 kinases. Prog. Cell Cycle Res. 5:413–421.

    PubMed  Google Scholar 

  • Zhu, W. G., Srinivasan, K., Dai, Z., Duan, W., Druhan, L. J., Ding, H., Yee, L., Villalona-Calero, M. A., Plass, C., and Otterson, G. A. 2003. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol. Cell Biol. 23:4056–4065.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH Grant RO1 CA127263.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid H. Siddik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Siddik, Z.H. (2009). Drug Resistance and the Tumor Suppressor p53: The Paradox of Wild-Type Genotype in Chemorefractory Cancers. In: Siddik, Z., Mehta, K. (eds) Drug Resistance in Cancer Cells. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89445-4_9

Download citation

Publish with us

Policies and ethics