Ribosomal Frameshifting in Decoding Plant Viral RNAs

  • W. Allen Miller
  • David P. Giedroc
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)


Frameshifting provides an elegant mechanism by which viral RNA both encodes overlapping genes and controls expression levels of those genes. As in animal viruses, the −1 ribosomal frameshift site in the viral mRNA consists of a canonical shifty heptanucleotide followed by a highly structured frameshift stimulatory element, and the gene translated as a result of frameshifting usually encodes the RNA-dependent RNA polymerase. In plant viruses, the −1 frameshift stimulatory element consists of either (i) a small pseudoknot stabilized by many triple-stranded regions and a triple base pair containing a protonated cytidine at the helical junction, (ii) an unusual apical loop–internal loop interaction in which a stem-loop in the 3 untranslated region 4 kb downstream base pairs to a bulged stem-loop at the frameshift site, or (iii) a potential simple stem-loop. Other less well-characterized changes in reading frame occur on plant viral RNAs, including a possible +1 frameshift, and net −1 reading frame changes that do not utilize canonical frameshift signals. All these studies reveal the remarkable ways in which plant viral RNAs interact with ribosomes to precisely control protein expression at the ratios needed to sustain virus replication.


Citrus Tristeza Virus Potato Leaf Roll Virus Rabbit Reticulocyte Lysate Beet Western Yellow Virus Wheat Germ Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Andrew Firth, John Atkins, and Alex Karasev for valuable advice, and Nikki Krueger for constructing the phylogenetic tree in Fig. 9.2A. This work was funded by USDA National Research Initiative grant 2008-35319-19196 and NIH grant GM067104 to WAM, and NIH grants AI040187 and AI067416 to DPG.


  1. Agranovsky AA, Koonin EV, Boyko VP, Maiss E, Frotschl R., Lunina NA, Atabekov JG (1994) Beet Yellows Closterovirus: Complete genome structure and identification of a leader papain-like Thiol protease. Virology 198:311–324PubMedCrossRefGoogle Scholar
  2. Balke I, Resevica G, Zeltins A (2007) The ryegrass mottle virus genome codes for a sobemovirus 3C-like serine protease and RNA-dependent RNA polymerase translated via −1 ribosomal frameshifting. Virus Genes 35:395–398PubMedCrossRefGoogle Scholar
  3. Barry JK, Miller WA (2002) A -1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA. Proc Natl Acad Sci USA 99:11133–11138PubMedCrossRefGoogle Scholar
  4. Belcourt MF, Farabaugh PJ (1990) Ribosomal frameshifting in the yeast retrotransposon Ty - Transfer-RNAs induce slippage on a 7-Nucleotide minimal site. Cell 62:339–352PubMedCrossRefGoogle Scholar
  5. Belshaw R, Pybus OG, Rambaut A (2007) The evolution of genome compression and genomic novelty in RNA viruses. Genome Res 17:1496–1504PubMedCrossRefGoogle Scholar
  6. Berger PH, Adams MJ, Barnett OW, Brunt AA, Hammond J, Hill JH, Jordan RL, Kashiwazaki S, Rybicki E, Spence N, Stenger DC, Ohki ST, Uyeda I, van Zaayen A, Valkonen J, Vetten HJ (2005) Family potyviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: Eighth report of the international committee on the taxonomy of viruses, pp. 819–841. Elsevier Academic Press, San DiegoGoogle Scholar
  7. Bidou L, Stahl G, Grima B, Liu H, Cassan M, Rousset JP (1997) In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal. RNA 3:1153–1158PubMedGoogle Scholar
  8. Brault V, Miller WA (1992) Translational frameshifting mediated by a viral sequence in plant cells. Proc Natl Acad Sci USA 89:2262–2266PubMedCrossRefGoogle Scholar
  9. Brierley I, Jenner AJ, Inglis SC (1992) Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol 227:463–479PubMedCrossRefGoogle Scholar
  10. Brodersen DE, Clemons WM Jr, Carter AP Wimberly BT, Ramakrishnan V (2002) Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: Structure of the proteins and their interactions with 16 S RNA. J Mol Biol 316:725–768PubMedCrossRefGoogle Scholar
  11. Cao S, Chen SJ (2008) Predicting ribosomal frameshifting efficiency. Phys Biol 5:16002CrossRefGoogle Scholar
  12. Cevik B, Lee RF, Niblett CL (2008) In vivo and in vitro expression analysis of the RNA-dependent RNA polymerase of Citrus tristeza virus. Arch Virol 153:315–321PubMedCrossRefGoogle Scholar
  13. Chung BY-W, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902PubMedCrossRefGoogle Scholar
  14. Cornish PV, Ermolenko DN, Noller HF, Ha T (2008) Spontaneous intersubunit rotation in single ribosomes. Mol Cell 30:578–588PubMedCrossRefGoogle Scholar
  15. Cornish PV, Giedroc DP (2006) Pairwise coupling analysis of helical junction hydrogen bonding interactions in luteoviral RNA pseudoknots. Biochemistry 45:11162–11171PubMedCrossRefGoogle Scholar
  16. Cornish PV Giedroc DP, Hennig M (2006) Dissecting non-canonical interactions in frameshift-stimulating mRNA pseudoknots. J Biomol NMR 35:209–223CrossRefGoogle Scholar
  17. Cornish PV, Hennig M, Giedroc DP (2005) A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting. Proc Natl Acad Sci USA 102:12694–12699PubMedCrossRefGoogle Scholar
  18. Cornish PV, Stammler SN, Giedroc DP (2006) The global structures of a wild-type and poorly functional plant luteoviral mRNA pseudoknot are essentially identical. RNA 12:1959–1969PubMedCrossRefGoogle Scholar
  19. Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C (2005) Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol Cell 19:333–343PubMedCrossRefGoogle Scholar
  20. D’Arcy CJ, Domier LL (2005) Luteoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: Eighth report of the international committee on taxonomy of viruses, pp. 891–900. Elsevier, San DiegoGoogle Scholar
  21. Demler SA, Borkhsenious ON, Rucker DG, de Zoeten GA (1994) Assessment of the autonomy of replicative and structural functions encoded by the luteo-phase of pea enation mosaic virus. J Gen Virol 75:997–1007PubMedCrossRefGoogle Scholar
  22. Demler SA, Rucker DG, de Zoeten GA (1993) The chimeric nature of the genome of pea enation mosaic virus: The independent replication of RNA 2. J Gen Virol 74:1–14PubMedCrossRefGoogle Scholar
  23. Di R, Dinesh-Kumar SP, Miller WA (1993) Translational frameshifting by barley yellow dwarf virus RNA (PAV serotype) in Escherichia coli and in eukaryotic cell-free extracts. Molec Plant-Microbe Interact 6:444–452CrossRefGoogle Scholar
  24. Dinesh-Kumar SP, Brault V, Miller WA (1992) Precise mapping and in vitro translation of a trifunctional subgenomic RNA of barley yellow dwarf virus. Virology 187:711–722PubMedCrossRefGoogle Scholar
  25. Doherty EA, Batey RT, Masquida B, Doudna JA (2001) A universal mode of helix packing in RNA. Nat Struct Biol 8:339–343PubMedCrossRefGoogle Scholar
  26. Dwyer GI, Njeru R, Williamson S, Fosu-Nyarko J, Hopkins R, Jones RA, Waterhouse PM, Jones MG (2003) The complete nucleotide sequence of Subterranean clover mottle virus. Arch Virol 148:2237–2247PubMedCrossRefGoogle Scholar
  27. Egli M, Minasov G, Su L, Rich A (2002) Metal ions and flexibility in a viral RNA pseudoknot at atomic resolution. Proc Natl Acad Sci USA 99:4302–4307PubMedCrossRefGoogle Scholar
  28. Fargette D, Pinel A, Abubakar Z, Traore O, Brugidou C, Fatogoma S, Hebrard E, Choisy M, Sere Y, Fauquet C, Konate G (2004) Inferring the evolutionary history of rice yellow mottle virus from genomic, phylogenetic, and phylogeographic studies. J Virol 78:3252–3261PubMedCrossRefGoogle Scholar
  29. Gamarnik AV, Andino R (1998) Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–2304PubMedCrossRefGoogle Scholar
  30. Garcia A, van Duin J, Pleij CW (1993) Differential response to frameshift signals in eukaryotic and prokaryotic translational systems. Nucleic Acids Res 21:401–406PubMedCrossRefGoogle Scholar
  31. Gaudin C, Mazauric MH, Traikia M, Guittet E, Yoshizawa S, Fourmy D (2005) Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol 349:1024–1035PubMedCrossRefGoogle Scholar
  32. Giedroc DP, Cornish PV (2009) Frameshifting RNA pseudoknots: Structure and mechanism. Virus Res 139:193–208.PubMedCrossRefGoogle Scholar
  33. Giedroc DP, Cornish PV, Hennig M (2003) Detection of scalar couplings involving 2-hydroxyl protons across hydrogen bonds in a frameshifting mRNA pseudoknot. J Am Chem Soc 125:4676–4677PubMedCrossRefGoogle Scholar
  34. Giedroc DP, Theimer CA, Nixon PL (2000) Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J Mol Biol 298:167–185PubMedCrossRefGoogle Scholar
  35. Gramstat A, Prüfer D, Rohde W (1994) The nucleic acid-binding zinc finger protein of potato virus M is translated by internal initiation as well as by ribosomal frameshifting involving a shifty stop codon and a novel mechanism of P-site slippage. Nucleic Acids Res 22:3911–3917PubMedCrossRefGoogle Scholar
  36. Green L, Kim CH, Bustamante C, Tinoco I Jr (2008) Characterization of the mechanical unfolding of RNA pseudoknots. J Mol Biol 375:511–528PubMedCrossRefGoogle Scholar
  37. Grentzmann G, Ingram JA, Kelly PJ, Gesteland RF, Atkins JF (1998) A dual-luciferase reporter system for studying recoding signals. RNA 4:479–486PubMedCrossRefGoogle Scholar
  38. Guo L, Allen E, Miller WA (2001) Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7:1103–1109PubMedCrossRefGoogle Scholar
  39. Hansen T M, Reihani SN, Oddershede LB, Sorensen MA (2007) Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Proc Natl Acad Sci USA 104:5830–5835PubMedCrossRefGoogle Scholar
  40. Harger JW, Meskauskas A, Dinman JD (2002) An “integrated model” of programmed ribosomal frameshifting. Trends Biochem Sci 27:448–454PubMedCrossRefGoogle Scholar
  41. Holmes EC (2003) Error thresholds and the constraints to RNA virus evolution. Trends Microbiol 11:543–546PubMedCrossRefGoogle Scholar
  42. Hull R, Fargette D (2005) Sobemovirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: Eighth report of the international committee on taxonomy of viruses, pp. 885–890. Elsevier, San DiegoGoogle Scholar
  43. Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: Close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858PubMedCrossRefGoogle Scholar
  44. Jacks T, Madhani HD, Masiarz FR, Varmus HE (1988) Signals for ribosomal frameshifting in the Rous Sarcoma virus gag pol region. Cell 55:447–458PubMedCrossRefGoogle Scholar
  45. Karasev AV (2000) Genetic diversity and evolution of Closteroviruses. Annu Rev Phytopathol 38:293–324PubMedCrossRefGoogle Scholar
  46. Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, et al (1995) Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–520PubMedCrossRefGoogle Scholar
  47. Kim KH, Lommel SA (1998) Sequence element required for efficient −1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus. Virology 250:50–59PubMedCrossRefGoogle Scholar
  48. Kim YG, Maas S, Wang SC, Rich A (2000) Mutational study reveals that tertiary interactions are conserved in ribosomal frameshifting pseudoknots of two luteoviruses. RNA 6:1157–1165PubMedCrossRefGoogle Scholar
  49. Kim YG, Su L, Maas S, O’Neill A, Rich A (1999) Specific mutations in a viral RNA pseudoknot drastically change ribosomal frameshifting efficiency. Proc Natl Acad Sci USA 96:14234–14239PubMedCrossRefGoogle Scholar
  50. Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: Implications of comparative analysis of amino acid sequences. Critic Rev Biochem Molec Biol 28:375–430CrossRefGoogle Scholar
  51. Kozak M (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res 18:2828–2828Google Scholar
  52. Kujawa AB, Drugeon G, Hulanicka D, Haenni AL (1993) Structural requirements for efficient translational frameshifting in the synthesis of the putative viral RNA-dependent RNA polymerase of potato leafroll virus. Nucleic Acids Res 21:2165–2171PubMedCrossRefGoogle Scholar
  53. Larsen B, Gesteland RF, Atkins JF (1997) Structural probing and mutagenic analysis of the stem-loop required for Escherichia coli dnaX ribosomal frameshifting: Programmed efficiency of 50%. J Mol Biol 271:47–60PubMedCrossRefGoogle Scholar
  54. Le Gall O, Christian P, Fauquet CM, King AM, Knowles NJ, Nakashima N, Stanway G, Gorbalenya AE (2008) Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol 153:715–727PubMedCrossRefGoogle Scholar
  55. Leger M, Dulude D, Steinberg SV, Brakier-Gingras L (2007) The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift. Nucleic Acids Res 35:5581–5592PubMedCrossRefGoogle Scholar
  56. Lokesh GL, Gopinath K., Satheshkumar PS, Savithri HS (2001) Complete nucleotide sequence of Sesbania mosaic virus: A new virus species of the genus Sobemovirus. Arch Virol 146:209–223PubMedCrossRefGoogle Scholar
  57. Lommel SA, Martelli GP, Rubino L., Russo M (2005) Tombusviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy: Eighth report of the international committee on taxonomy of viruses, pp. 907–936. Elsevier, San DiegoGoogle Scholar
  58. Lu J, Deutsch C (2008) Electrostatics in the ribosomal tunnel modulate chain elongation rates. J Mol Biol 384:73–86Google Scholar
  59. Lucchesi J, Makelainen K, Merits A, Tamm T, Makinen K (2000) Regulation of −1 ribosomal frameshifting directed by cocksfoot mottle sobemovirus genome. Eur J Biochem 267:3523–3529PubMedCrossRefGoogle Scholar
  60. Makelainen K, Makinen K (2005) Factors affecting translation at the programmed −1 ribosomal frameshifting site of Cocksfoot mottle virus RNA in vivo. Nucleic Acids Res 33:2239–2247PubMedCrossRefGoogle Scholar
  61. Makinen K, Makelainen K, Arshava N, Tamm T, Merits A, Truve E, Zavriev S, Saarma M (2000) Characterization of VPg and the polyprotein processing of cocksfoot mottle virus (genus sobemovirus). J Gen Virol 81:2783–2789PubMedGoogle Scholar
  62. Makinen K, Naess V, Tamm T, Truve E, Aaspollu A, Saarma M (1995) The putative replicase of cocksfoot mottle sobemovirus is translated as a part of the polyprotein by −1 ribosomal frameshift. Virology 207:566–571PubMedCrossRefGoogle Scholar
  63. Makinen K, Tamm T, Naess V, Truve E, Puurand ö, Munthe T, Saarma M (1995) Characterization of cocksfoot mottle sobemovirus genomic RNA and sequence comparison with related viruses. J Gen Virol 76:2817–2825PubMedCrossRefGoogle Scholar
  64. Marcheschi RJ, Staple DW, Butcher SE (2007) Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop. J Mol Biol 373:652–663PubMedCrossRefGoogle Scholar
  65. Mayo MA, D’Arcy CJ (1999) Family Luteoviridae: A reclassification of luteoviruses. In: Smith HG, Barker H (eds) The Luteoviridae. CABI Publishing, Wallingford, OxonGoogle Scholar
  66. Mazauric MH, Licznar P, Prere MF, Canal I, Fayet O (2008) Apical loop-internal loop RNA pseudoknots: A new type of stimulator of −1 translational frameshifting in bacteria. J Biol Chem 283:20421–20432PubMedCrossRefGoogle Scholar
  67. McCartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT (2005) Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17:3513–3531PubMedCrossRefGoogle Scholar
  68. Meier M, Truve E (2007) Sobemoviruses possess a common CfMV-like genomic organization. Arch Virol 152:635–640PubMedCrossRefGoogle Scholar
  69. Melzer MJ, Sether DM, Karasev AV, Borth W, Hu JS (2008) Complete nucleotide sequence and genome organization of pineapple mealybug wilt-associated virus-1. Arch Virol 153:707–714PubMedCrossRefGoogle Scholar
  70. Miller WA, Liu S, Beckett R (2002) Barley yellow dwarf virus: Luteoviridae or Tombusviridae? Mol Plant Pathol 3:177–183PubMedCrossRefGoogle Scholar
  71. Miller WA, White KA (2006) Long distance RNA-RNA interactions in plant virus gene expression and replication. Ann Rev Phytopathol 44: 447–467Google Scholar
  72. Mizumoto H, Tatsuta M, Kaido M, Mise K, Okuno T (2003) Cap-independent translational enhancement by the 3 untranslated region of red clover necrotic mosaic virus RNA1. J Virol 77:12113–12121PubMedCrossRefGoogle Scholar
  73. Moonan F, Molina J, Mirkov TE (2000) Sugarcane yellow leaf virus: An emerging virus that has evolved by recombination between luteoviral and poleroviral ancestors. Virology 269:156–171PubMedCrossRefGoogle Scholar
  74. Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I (2006) A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441:244–247PubMedCrossRefGoogle Scholar
  75. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: The A-minor motif. Proc Natl Acad Sci USA 98:4899–4903PubMedCrossRefGoogle Scholar
  76. Nixon PL, Cornish PV, Suram SV, Giedroc DP (2002) Thermodynamic analysis of conserved loop-stem interactions in P1-P2 frameshifting RNA pseudoknots from plant Luteoviridae. Biochemistry 41:10665–10674PubMedCrossRefGoogle Scholar
  77. Nixon PL, Giedroc DP (2000) Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot. J Mol Biol 296:659–671PubMedCrossRefGoogle Scholar
  78. Nixon PL, Rangan A, Kim YG, Rich A, Hoffman DW, Hennig M., Giedroc DP (2002) Solution structure of a luteoviral P1–P2 frameshifting mRNA pseudoknot. J Mol Biol 322:621–633PubMedCrossRefGoogle Scholar
  79. Onoa B, Dumont S, Liphardt J, Smith SB, Tinoco I Jr, Bustamante C (2003) Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science 299:1892–1895Google Scholar
  80. Pallan PS, Marshall WS, Harp J, Jewett FC, 3rd, Wawrzak Z, Brown BA 2nd, Rich A, Egli M (2005) Crystal structure of a luteoviral RNA pseudoknot and model for a minimal ribosomal frameshifting motif. Biochemistry 44:11315–11322PubMedCrossRefGoogle Scholar
  81. Panavas T, Hawkins CM, Panaviene Z, Nagy PD (2005) The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 338:81–95PubMedCrossRefGoogle Scholar
  82. Paul CP, Barry JK, Dinesh-Kumar SP, Brault V, Miller WA (2001) A sequence required for −1 ribosomal frameshifting located four kilobases downstream of the frameshift site. J Mol Biol 310:987–999PubMedCrossRefGoogle Scholar
  83. Plant EP, Jacobs KL, Harger JW, Meskauskas A, Jacobs JL, Baxter JL, Petrov AN, Dinman JD (2003) The 9-Å solution: How mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. RNA 9:168–174PubMedCrossRefGoogle Scholar
  84. Pogany J, White KA, Nagy PD (2005) Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication. J Virol 79:4859–4869PubMedCrossRefGoogle Scholar
  85. Prüfer D, Tacke E, Schmitz J, Kull B, Kaufmann A, Rohde W (1992) Ribosomal frameshifting in plants: A novel signal directs the −1 frameshift in the synthesis of the putative viral replicase of potato leafroll luteovirus. EMBO J 11:1111–1117PubMedGoogle Scholar
  86. Salem NM, Miller WA, Rowhani AK, Golino DA, Moyne A.-L, Falk BW (2008) Rose spring dwarf-associated virus has RNA structural and gene-expression features like those of Barley yellow dwarf virus. Virology 375:354–360PubMedCrossRefGoogle Scholar
  87. Schwartz M, Chen J, Janda M, Sullivan M, den Boo J, Ahlquist P (2002) A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514PubMedCrossRefGoogle Scholar
  88. Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942PubMedCrossRefGoogle Scholar
  89. Skaf JS, Schultz MH, Hirata H, de Zoeten GA (2000) Mutational evidence that the VPg is involved in the replication and not the movement of Pea enation mosaic virus-1. J Gen Virol 81:1103–1109PubMedGoogle Scholar
  90. Smith GR, Borg Z, Lockhart BE, Braithwaite KS, Gibbs MJ (2000) Sugarcane yellow leaf virus: A novel member of the Luteoviridae that probably arose by inter-species recombination. J Gen Virol 81:1865–1869PubMedGoogle Scholar
  91. Stahl G, McCarty GP, Farabaugh PJ (2002) Ribosome structure: Revisiting the connection between translational accuracy and unconventional decoding. Trends Biochem Sci 27:178–183PubMedCrossRefGoogle Scholar
  92. Staple DW, Butcher SE (2005) Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol 349:1011–1023PubMedCrossRefGoogle Scholar
  93. Su L, Chen L, Egli M, Berger JM, Rich A (1999) Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol 6:285–292PubMedCrossRefGoogle Scholar
  94. Takyar S, Hickerson RP, Noller HF (2005) mRNA helicase activity of the ribosome. Cell 120:49–58PubMedCrossRefGoogle Scholar
  95. Taliansky ME, Robinson DJ, Waterhouse PM, Murant AF, De Zoeten GA, Falk BW, Gibbs MJ (2005) Umbravirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds), Virus taxonomy: Eighth report of the international committee on taxonomy of viruses, pp. 901–906. Elsevier, San DiegoGoogle Scholar
  96. Tamm T, Truve E (2000) Sobemoviruses. J Virol 74:6231–6241PubMedCrossRefGoogle Scholar
  97. ten Dam EB, Verlaan PW, Pleij CW (1995) Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: Loop lengths and stability of the stem regions. RNA 1:146–154PubMedGoogle Scholar
  98. Theimer CA, Giedroc DP (2000) Contribution of the intercalated adenosine at the helical junction to the stability of the gag-pro frameshifting pseudoknot from mouse mammary tumor virus. RNA 6:409–421PubMedCrossRefGoogle Scholar
  99. Tinoco I Jr, Li PT, Bustamante C (2006) Determination of thermodynamics and kinetics of RNA reactions by force. Q Rev Biophys 39:325–360PubMedCrossRefGoogle Scholar
  100. Turner KA, Sit TL, Callaway AS, Allen NS, Lommel SA (2004) Red clover necrotic mosaic virus replication proteins accumulate at the endoplasmic reticulum. Virology 320:276–290PubMedCrossRefGoogle Scholar
  101. van der Wilk F, Verbeek M, Dullemans A, van den Heuvel J (1998) The genome-linked protein (VPg) of southern bean mosaic virus is encoded by the ORF2. Virus Genes 17:21–24PubMedCrossRefGoogle Scholar
  102. van der Wilk F, Verbeek M, Dullemans AM, van den Heuvel JF (1997) The genome-linked protein of potato leafroll virus is located downstream of the putative protease domain of the ORF1 product. Virology 234:300–303PubMedCrossRefGoogle Scholar
  103. Yusupova GZ, Yusupov MM, Cate JH, Noller HF (2001) The path of messenger RNA through the ribosome. Cell 106:233–241PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Plant Pathology Department, and Biochemistry, Biophysics & Molecular Biology DepartmentsIowa State UniversityAmesUSA
  2. 2.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations