Specification of Standard Amino Acids by Stop Codons

  • Olivier Namy
  • Jean-Pierre Rousset
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)


Translation termination is usually a very efficient process. When a stop codon enters the ribosomal A-site it is recognized by the termination complex which promotes release of the polypeptide and dissociation of the ribosome. However, the efficiency of termination depends of the local context of the stop codon. In a number of cases, programmed stop codon readthrough occurs allowing the synthesis of two polypeptides from the same mRNA. These events have been identified both in viral and in cellular genes. In cells, either standard or specialized amino acids (selenocystein, pyrrolysine) can be incorporated at the stop codon by near cognate or cognate tRNAs, respectively. In this chapter, we focus on readthrough events involving incorporation of standard amino acids. In addition to their biological relevance, stop codon readthrough sites are useful tools to study translation termination mechanisms, especially in eukaryotes where they are less understood. We present an overview of this field discussing the mechanisms involved and how new readthrough sites can be identified in databases. Finally we propose further directions to better understand termination and readthrough mechanisms.


Stop Codon Tobacco Mosaic Virus Release Factor Translation Termination Premature Termination Codon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alam SL, Wills NM, Ingram JA, Atkins JF, Gesteland RF (1999) Structural studies of the RNA pseudoknot required for readthrough of the gag-termination codon of murine leukemia virus. J Mol Biol 288:837–852PubMedCrossRefGoogle Scholar
  2. Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125:1125–1136Allamand V, Bidou L, Arakawa M, Floquet C, Shiozuka M, Paturneau-Jouas M, Gartioux C, Bulter-Browne GS, Mouly V, Rousset JP, Matsuda R, Ikeda D, Guicheney p (2008) Drug-induced readthrough of premature stop codons leads to the stabilization of laminin alpha2 chain mRNA in CMD myotubes, J Gene Med 10:217–224PubMedCrossRefGoogle Scholar
  3. Amrani N, Ganesan R, Kervestin S, Mangus D.A, Ghosh S, Jacobson A (2004) A faux 3-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432:112–118PubMedCrossRefGoogle Scholar
  4. Arkov AL, Korolev SV, Kisselev LL (1995) 5 contexts of Escherichia coli and human termination codons are similar. Nucleic Acids Res 23:4712–4716PubMedCrossRefGoogle Scholar
  5. Bass B.L, (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846PubMedCrossRefGoogle Scholar
  6. Baum M, Beier H (1998) Wheat cytoplasmic arginine tRNA isoacceptor with a U*CG anticodon is an efficient UGA suppressor in vitro. Nucleic Acids Res 26:1390–1395PubMedCrossRefGoogle Scholar
  7. Beier H, Grimm M (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29:4767–4782PubMedCrossRefGoogle Scholar
  8. Bergstrom DE, Merli CA, Cygan JA, Shelby R, Blackman RK (1995) Regulatory autonomy and molecular characterization of the Drosophila out at first gene. Genetics 139:1331–1346PubMedGoogle Scholar
  9. Berteaux V, Rousset JP, Cassan M (1991) UAG readthrough is not increased in vivo by Moloney murine leukemia virus infection. Biochimie 73:1291–1293PubMedCrossRefGoogle Scholar
  10. Bertram G, Bell H.A, Ritchie D.W, Fullerton G, Stansfield I (2000) Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. RNA 6:1236–1247PubMedCrossRefGoogle Scholar
  11. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, Kuehn MS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum JA, Andrews RM, Flicek P, Boyle PJ, Cao H, Carter NP, Clelland GK, Davis S, Day N, Dhami P, Dillon SC, et al. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816PubMedCrossRefGoogle Scholar
  12. Björnsson A, Mottagui-Tabar S, Isaksson LA (1996) Structure of the C-terminal end of the nascent peptide influences translation termination. EMBO J 15:1696–1704PubMedGoogle Scholar
  13. Bonetti B, Fu L, Moon J, Bedwell DM (1995) The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251:334–345PubMedCrossRefGoogle Scholar
  14. Brown CM, Dinesh-Kumar SP, Miller WA (1996) Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 70:5884–5892PubMedGoogle Scholar
  15. Brown CM, Stockwell PA, Trotman CN, Tate WP (1990) Sequence analysis suggests that tetra-nucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 18:6339–6345PubMedCrossRefGoogle Scholar
  16. Cassan M, Rousset JP (2001) UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2:3PubMedCrossRefGoogle Scholar
  17. Castellano S, Gladyshev VN, Guigo R, Berry MJ (2008) SelenoDB 1.0: a database of selenoprotein genes, proteins and SECIS elements. Nucleic Acids Res 36:D332–D338PubMedCrossRefGoogle Scholar
  18. Chavatte L, Kervestin S, Favre A, Jean-Jean O (2003) Stop codon selection in eukaryotic translation termination: comparison of the discriminating potential between human and ciliate eRF1 s. EMBO J 22:1644–1653PubMedCrossRefGoogle Scholar
  19. Cridge AG, Major LL, Mahagaonkar AA, Poole ES, Isaksson LA, Tate WP (2006) Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms. Nucleic Acids Res 34:1959–1973PubMedCrossRefGoogle Scholar
  20. Dreher TW, Miller WA (2006) Translational control in positive strand RNA plant viruses. Virology 344:185–197PubMedCrossRefGoogle Scholar
  21. Eurwilaichitr L, Graves FM, Stansfield I, Tuite MF (1999) The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 32:485–496PubMedCrossRefGoogle Scholar
  22. Fan-Minogue H, Du M, Pisarev AV, Kallmeyer AK, Salas-Marco J, Keeling KM, Thompson SR, Pestova TV, Bedwell DM (2008) Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol Cell 30:599–609PubMedCrossRefGoogle Scholar
  23. Fearon K, McClendon V, Bonetti B, Bedwell DM (1994) Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 269:17802–17808PubMedGoogle Scholar
  24. Feng YX, Yuan H, Rein A, Levin JG (1992) Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J Virol 66:5127–5132PubMedGoogle Scholar
  25. Figaro S, Scrima N, Buckingham RH, Heurgue-Hamard V (2008) HemK2 protein, encoded on human chromosome 21, methylates translation termination factor eRF1. FEBS Lett 582:2352–2356PubMedCrossRefGoogle Scholar
  26. Frischmeyer PA, van Hoof A, O’Donnell K, Guerrerio AL, Parker R, Dietz HC (2002) An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295:2258–2261PubMedCrossRefGoogle Scholar
  27. Fujita M, Mihara H, Goto S, Esaki N, Kanehisa M (2007) Mining prokaryotic genomes for unknown amino acids: a stop-codon-based approach. BMC Bioinformatics 8:225PubMedCrossRefGoogle Scholar
  28. Gao H, Zhou Z, Rawat U, Huang C, Bouakaz L, Wang C, Cheng Z, Liu Y, Zavialov A, Gursky R, Sanyal S, Ehrenberg M, Frank J, Song H (2007) RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129:929–941PubMedCrossRefGoogle Scholar
  29. Heurgue-Hamard V, Champ S, Mora L, Merkulova-Rainon T, Kisselev LL, Buckingham RH (2005) The glutamine residue of the conserved GGQ motif in Saccharomyces cerevisiae release factor eRF1 is methylated by the product of the YDR140w gene. J Biol Chem 280:2439–2445PubMedCrossRefGoogle Scholar
  30. Hofstetter H, Monstein HJ, Weissmann C (1974) The readthrough protein A1 is essential for the formation of viable Q beta particles. Biochim Biophys Acta 374:238–251PubMedCrossRefGoogle Scholar
  31. Ito K, Uno M, Nakamura Y (2000) A tripeptide ’anticodon’ deciphers stop codons in messenger RNA. Nature 403:680–684PubMedCrossRefGoogle Scholar
  32. Ivanov PV, Gehring NH, Kunz JB, Hentze MW, Kulozik AE (2008) Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. EMBO J 27:736–747PubMedCrossRefGoogle Scholar
  33. Ivanova EV, Kolosov PM, Birdsall B, Kelly G, Pastore A, Kisselev LL, Polshakov VI (2007) Eukaryotic class 1 translation termination factor eRF1–the NMR structure and dynamics of the middle domain involved in triggering ribosome-dependent peptidyl-tRNA hydrolysis. FEBS J 274:4223–4237PubMedCrossRefGoogle Scholar
  34. Jalajakumari MB, Thomas CJ, Halter R, Manning PA (1989) Genes for biosynthesis and assembly of CS3 pili of CFA/II enterotoxigenic Escherichia coli: novel regulation of pilus production by bypassing an amber codon. Mol Microbiol 3:1685–1695PubMedCrossRefGoogle Scholar
  35. Jones DS, Nemoto F, Kuchino Y, Masuda M, Yoshikura H, Nishimura S (1989) The effect of specific mutations at and around the gag-pol gene junction of Moloney murine leukaemia virus. Nucleic Acids Res 17:5933–5945PubMedCrossRefGoogle Scholar
  36. Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, Kaenjak-Angeletti A, Bedwell DM (2004) Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10:691–703PubMedCrossRefGoogle Scholar
  37. Kervestin S, Frolova L, Kisselev L, Jean-Jean O (2001) Stop codon recognition in ciliates: Euplotes release factor does not respond to reassigned UGA codon. EMBO Rep 2:680–684.PubMedCrossRefGoogle Scholar
  38. Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B, Ehrenberg M, van Heel M (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421:90–94PubMedCrossRefGoogle Scholar
  39. Kong C, Ito K, Walsh MA, Wada M, Liu Y, Kumar S, Barford D, Nakamura Y, Song H (2004) Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol Cell 14:233–245PubMedCrossRefGoogle Scholar
  40. Korostelev A, Asahara H, Lancaster L, Laurberg M, Hirschi A, Zhu J, Trakhanov S, Scott WG, Noller HF (2008). Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci USA 105:19684–19689.Google Scholar
  41. Kryukov GV, Kryukov VM, Gladyshev VN (1999) New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem 274:33888–33897PubMedCrossRefGoogle Scholar
  42. Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF (2008) Structural basis for translation termination on the 70S ribosome. Nature 454:852–857PubMedCrossRefGoogle Scholar
  43. Lecointe F, Namy O, Hatin I, Simos G, Rousset JP, Grosjean H (2002) Lack of pseudouridine 38/39 in the anticodon arm of yeast cytoplasmic tRNA decreases in vivo recoding efficiency. J Biol Chem 277:30445–30453PubMedCrossRefGoogle Scholar
  44. Lekomtsev S, Kolosov P, Bidou L, Frolova L, Rousset JP, Kisselev L (2007) Different modes of stop codon restriction by the Stylonychia and Paramecium eRF1 translation termination factors. Proc Natl Acad Sci USA 104:10824–10829PubMedCrossRefGoogle Scholar
  45. Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem 274:38147–38154PubMedCrossRefGoogle Scholar
  46. Levin ME, Hendrix RW, Casjens SR (1993) A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein. J Mol Biol 234:124–139PubMedCrossRefGoogle Scholar
  47. Li G, Rice CM (1993) The signal for translational readthrough of a UGA codon in Sindbis virus RNA involves a single cytidine residue immediately downstream of the termination codon. J Virol 67:5062–5067PubMedGoogle Scholar
  48. Lin MF, Carlson JW, Crosby MA, Matthews BB, Yu C, Park S, Wan KH, Schroeder AJ, Gramates LS, St Pierre SE, Roark M, Wiley KL Jr, Kulathinal RJ, Zhang P, Myrick KV, Antone JV, Celniker SE, Gelbart WM, Kellis M (2007) Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. Genome Res 17:1823–1836PubMedCrossRefGoogle Scholar
  49. Liu Q, Xue Q (2004) Computational identification and sequence analysis of stop codon readthrough genes in Oryza sativa. Biosystems 77:33–39PubMedCrossRefGoogle Scholar
  50. McCaughan KK, Brown CM, Dalphin ME, Berry MJ, Tate WP (1995) Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc Natl Acad Sci USA 92:5431–5435PubMedCrossRefGoogle Scholar
  51. Mitchell P, Tollervey D (2003) An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3→5 degradation. Mol Cell 11:1405–1413PubMedCrossRefGoogle Scholar
  52. Mix H, Lobanov AV, Gladyshev VN (2007) SECIS elements in the coding regions of selenoprotein transcripts are functional in higher eukaryotes. Nucleic Acids Res 35:414–423PubMedCrossRefGoogle Scholar
  53. Mora L, Heurgue-Hamard V, Champ S, Ehrenberg M, Kisselev LL, Buckingham RH (2003) The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol. Microbiol 47:267–275PubMedCrossRefGoogle Scholar
  54. Mottagui-Tabar S, Isaksson LA (1997) Only the last amino acids in the nascent peptide influence translation termination in Escherichia coli genes. FEBS Lett 414:165–170PubMedCrossRefGoogle Scholar
  55. Mottagui-Tabar S, Isaksson LA (1998) The influence of the 5 codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium. Gene 212:189–196PubMedCrossRefGoogle Scholar
  56. Nakamura Y, Ito K (2002) A tripeptide discriminator for stop codon recognition. FEBS Lett 514:30–33PubMedCrossRefGoogle Scholar
  57. Namy O, Duchateau-Nguyen G, Hatin I, Hermann-Le Denmat S, Termier M, Rousset JP (2003) Identification of stop codon readthrough genes in Saccharomyces cerevisiae. Nucleic Acids Res 31:2289–2296PubMedCrossRefGoogle Scholar
  58. Namy O, Duchateau-Nguyen G, Rousset JP (2002) Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol Microbiol 43:641–652PubMedCrossRefGoogle Scholar
  59. Namy O, Galopier A, Martini C, Matsufuji S, Fabret C, Rousset JP (2008) Epigenetic control of polyamines by the prion [PSI(+)]. Nat Cell Biol 10:1069–1075PubMedCrossRefGoogle Scholar
  60. Namy O, Hatin I, Rousset JP 2001. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2:787–793PubMedCrossRefGoogle Scholar
  61. Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I (2006) A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441:244–247PubMedCrossRefGoogle Scholar
  62. Namy O, Rousset JP, Napthine S, Brierley I (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell 13:157–168PubMedCrossRefGoogle Scholar
  63. Namy O, Zhou Y, Gundllapalli S, Polycarpo CR, Denise A, Rousset JP, Soll D, Ambrogelly A (2007) Adding pyrrolysine to the Escherichia coli genetic code. FEBS Lett 581:5282–5288PubMedCrossRefGoogle Scholar
  64. Orlova M, Yueh A, Leung J, Goff SP (2003) Reverse transcriptase of Moloney murine leukemia virus binds to eukaryotic release factor 1 to modulate suppression of translational termination. Cell 115:319–331PubMedCrossRefGoogle Scholar
  65. Pelham HR (1978) Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272:469–471PubMedCrossRefGoogle Scholar
  66. Petry S, Brodersen DE, Murphy FV, Dunham CM, Selmer M, Tarry MJ, Kelley AC, Ramakrishnan V (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123:1255–1266PubMedCrossRefGoogle Scholar
  67. Philipson L, Andersson P, Olshevsky U, Weinberg R, Baltimore D, Gesteland R (1978) Translation of MuLV and MSV RNAs in nuclease-treated reticulocyte extracts: enhancement of the gag-pol polypeptide with yeast suppressor tRNA. Cell 13:189–199PubMedCrossRefGoogle Scholar
  68. Pisareva VP, Pisarev AV, Hellen CU, Rodnina MV, Pestova TV (2006) Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides. J Biol Chem 281:40224–40235PubMedCrossRefGoogle Scholar
  69. Poole ES, Brown CM, Tate WP (1995) The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 14:151–158PubMedGoogle Scholar
  70. Poole ES, Young DJ, Askarian-Amiri ME, Scarlett DJ, Tate WP (2007) Accommodating the bacterial decoding release factor as an alien protein among the RNAs at the active site of the ribosome. Cell Res 17:591–607PubMedCrossRefGoogle Scholar
  71. Rawat UB, Zavialov AV, Sengupta J, Valle M, Grassucci RA, Linde J, Vestergaard B, Ehrenberg M, Frank J (2003) A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421:87–90PubMedCrossRefGoogle Scholar
  72. Robinson DN, Cooley L (1997) Examination of the function of two kelch proteins generated by stop codon suppression. Development 124:1405–1417PubMedGoogle Scholar
  73. Salas-Marco J, Bedwell DM (2004) GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination. Mol Cell Biol 24:7769–7778PubMedCrossRefGoogle Scholar
  74. Salas-Marco J, Fan-Minogue H, Kallmeyer AK, Klobutcher LA, Farabaugh PJ, Bedwell DM (2006) Distinct paths to stop codon reassignment by the variant-code organisms Tetrahymena and Euplotes. Mol Cell Biol 26:438–447PubMedCrossRefGoogle Scholar
  75. Seit-Nebi A, Frolova L,, Justesen J, Kisselev L (2001) Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res 29:3982–3987PubMedGoogle Scholar
  76. Serio TR, Lindquist SL (1999) [PSI+]: an epigenetic modulator of translation termination efficiency. Annu Rev Cell Dev Biol 15:661–703PubMedCrossRefGoogle Scholar
  77. Silva AL, Ribeiro P, Inacio A, Liebhaber SA, Romao L (2008) Proximity of the poly(A)-binding protein to a premature termination codon inhibits mammalian nonsense-mediated mRNA decay. RNA 14:563–576PubMedCrossRefGoogle Scholar
  78. Singh G, Rebbapragada I, Lykke-Andersen J (2008) A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6:e111PubMedCrossRefGoogle Scholar
  79. Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF (1991) The signal for a leaky UAG stop codon in several plant viruses includes the two downstream codons. J Mol Biol 218:365–373PubMedCrossRefGoogle Scholar
  80. Smith D, Yarus M (1989) tRNA-tRNA interactions within cellular ribosomes. Proc Natl Acad Sci USA 86:4397–4401PubMedCrossRefGoogle Scholar
  81. Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF, Hemmings BA, Barford D (2000) The crystal structure of human eukaryotic release factor eRF1–mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100:311–321PubMedCrossRefGoogle Scholar
  82. Steneberg P, Englund C, Kronhamn J, Weaver TA, Samakovlis C (1998) Translational readthrough in the hdc mRNA generates a novel branching inhibitor in the Drosophila trachea. Genes Dev 12:956–967PubMedCrossRefGoogle Scholar
  83. Steneberg P, Samakovlis C (2001) A novel stop codon readthrough mechanism produces functional Headcase protein in Drosophila trachea. EMBO Rep 2:593–597PubMedCrossRefGoogle Scholar
  84. Tate WP, Mannering SA (1996) Three, four or more: the translational stop signal at length. Mol Microbiol 21:213–219PubMedCrossRefGoogle Scholar
  85. Tork S, Hatin I, Rousset JP, Fabret C (2004) The major 5 determinant in stop codon read-through involves two adjacent adenines. Nucleic Acids Res 32:415–421PubMedCrossRefGoogle Scholar
  86. Trobro S, Aqvist J (2007) A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol Cell 27:758–766PubMedCrossRefGoogle Scholar
  87. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407:477–483PubMedCrossRefGoogle Scholar
  88. Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M (2001) Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Mol Cell 8:1375–1382PubMedCrossRefGoogle Scholar
  89. Weiner AM, Weber K (1971) Natural read-through at the UGA termination signal of Q-beta coat protein cistron. Nat New Biol 234:206–209PubMedGoogle Scholar
  90. Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V (2008). Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956.Google Scholar
  91. Williams I, Richardson J, Starkey A, Stansfield I (2004) Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 32:6605–6616PubMedCrossRefGoogle Scholar
  92. Wills NM, Gesteland RF, Atkins JF (1991) Evidence that a downstream pseudoknot is required for translational read-through of the Moloney murine leukemia virus gag stop codon. Proc Natl Acad Sci USA 88:6991–6995PubMedCrossRefGoogle Scholar
  93. Wills NM, Gesteland RF, Atkins JF (1994) Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J 13:4137–4144PubMedGoogle Scholar
  94. Yoshinaka Y, Katoh I, Copeland TD, Oroszlan S (1985) Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci USA 82:1618–1622PubMedCrossRefGoogle Scholar
  95. Zavialov AV, Mora L, Buckingham RH, Ehrenberg M (2002) Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol Cell 10:789–798PubMedCrossRefGoogle Scholar
  96. Zerfass K, Beier H (1992) Pseudouridine in the anticodon G psi A of plant cytoplasmic tRNA(Tyr) is required for UAG and UAA suppression in the TMV-specific context. Nucleic Acids Res 20:5911–5918PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.IGM, CNRS, UMR 8621OrsayFrance
  2. 2.Université Paris-SudOrsayFrance

Personalised recommendations