Translation of UAG as Pyrrolysine

Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)


Pyrrolysine followed selenocysteine in order of discovery. While both atypical amino acids are encoded by canonical stop codons, the mechanisms by which they are inserted into protein are very different. Pyrrolysine is carried to the ribosome by tRNAPyl (encoded by pylT) whose unusual structure possesses the CUA anticodon needed to decode UAG. A pyrrolysyl-tRNA synthetase (product of pylS) ligates pyrrolysine to tRNAPyl. Pyrrolysine is made by the products of the pylBCD genes without the need for tRNAPyl, contrasting with selenocysteine synthesis on tRNASec. Isolated examples of the pylTSBCD genes, often in a single cluster, have been found in genomes of methanogenic Archaea, G+ Bacteria, and δ-proteobacteria. Escherichia coli transformed with pyl genes translates UAG as endogenously synthesized pyrrolysine. The ease of the lateral transfer of the genetic encoding of pyrrolysine is now being exploited for tailoring recombinant proteins. Pyrrolysine incorporation appears to occur to some extent by amber suppression on a genome-wide basis in methanogenic Archaea. With some methylamine methyltransferase transcripts, a putative pyrrolysine insertion sequence (PYLIS) forms an in-frame stem-loop 3 to the translated UAG, analogous to such loops required in Bacteria for translation of UGA as selenocysteine. PYLIS sequences are not found in all types of methylamine methyltransferases. Unlike the precedent of selenocysteine, after deletion of PYLIS, significant UAG translation remains with a marked increase in UAG-directed termination, suggesting some part of the PYLIS sequence functions in enhancing amber suppression. Some methanogen genomes encode additional homologs of elongation and release factors, however, their limited distribution suggests at best a nonessential role in enhancing UAG translation as pyrrolysine.


Stop Codon Genetic Code Methyltransferase Gene Imine Bond Sense Codon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the author’s laboratory is supported by the Department of Energy (DEFG020291ER200042) and the National Institute of Health (GM070663).


  1. Ambrogelly A, Gundllapalli S, Herring S, Polycarpo C, Frauer C, Söll, D (2007) Proc Natl Acad Sci USA 104:3141–3146PubMedCrossRefGoogle Scholar
  2. Atkins JF, Baranov PV (2007) Nature 448:1004–1005PubMedCrossRefGoogle Scholar
  3. Atkins JF, Gesteland, R (2002) Science 296:1409–1411PubMedCrossRefGoogle Scholar
  4. Bearne SL, Wolfenden, R (1995) Biochemistry 34:11515–11520PubMedCrossRefGoogle Scholar
  5. Beier H, Grimm, M (2001) Nucleic Acids Res 29:4767–4782PubMedCrossRefGoogle Scholar
  6. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, et al (1997) Science 277:1453–1474PubMedCrossRefGoogle Scholar
  7. Blight SK, Larue RC, Mahapatra A, Longstaff DG, Chang E, Zhao G, et al (2004) Nature 431:333–335PubMedCrossRefGoogle Scholar
  8. Böck A, Forchhammer K, Heider J, Baron C (1991a) Trends Biochem. Sci. 16:463–467Google Scholar
  9. Böck A, Forchhammer K, Hëider J, Leinfelder W, Sawers G, Veprek B, et al (1991b) Mol Microbiol 5:515–520Google Scholar
  10. Böck A, Thanbichler M, Rother M, Resch, A (2004) In: Ibba M, Francklyn C, Cusack S (eds), The Aminoacyl-tRNA synthetases. Landes BioscienceGoogle Scholar
  11. Burke SA, Krzycki JA (1997) J Biol Chem 272:16570–16577PubMedCrossRefGoogle Scholar
  12. Burke SA, Lo SL, Krzycki JA (1998) J Bacteriol 180:3432–3440PubMedGoogle Scholar
  13. Chambers I, Frampton J, Goldfarb P, Affara N, McBain W, Harrison PR (1986) EMBO J 5:1221–1227PubMedGoogle Scholar
  14. Chaudhuri BN, Yeates TO (2005) Genome Biol 6:R79PubMedCrossRefGoogle Scholar
  15. Cone JE, Del Rio RM, Davis JN, Stadtman TC (1976) Proc Natl Acad Sci USA 73:2659–2663PubMedCrossRefGoogle Scholar
  16. Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, et al (2002) J Mol Microbiol Biotechnol 4:453–461PubMedGoogle Scholar
  17. Deppenmeier U, Müller, V (2008) Results Probl Cell Differ 45:123–152PubMedCrossRefGoogle Scholar
  18. Fekner T, Li X, Lee MM, Chan MK (2009) Angew Chem Int Ed Engl 48:1633–1635PubMedCrossRefGoogle Scholar
  19. Ferguson DJ Jr, Gorlatova N, Grahame DA, Krzycki JA (2000) J Biol Chem 275:29053–29060PubMedCrossRefGoogle Scholar
  20. Ferguson DJ Jr, Krzycki JA (1997) J Bacteriol 179:846–852PubMedGoogle Scholar
  21. Ferry JG (1999) FEMS Microbiol Rev 23:13–38PubMedCrossRefGoogle Scholar
  22. Filee J, Siguier P, Chandler, M (2007) Microbiol Mol Biol Rev 71:121–157PubMedCrossRefGoogle Scholar
  23. Frey PA, Hegeman AD, Ruzicka FJ (2008) Crit Rev Biochem Mol Biol 43:63–88PubMedCrossRefGoogle Scholar
  24. Fujita M, Mihara H, Goto S, Esaki N, Kanehisa, M (2007) BMC Bioinformatics 8:225PubMedCrossRefGoogle Scholar
  25. Galagan JE, Nusbaum C, Roy A, Endrizzi MG, Macdonald P, FitzHugh W, et al (2002) Genome Res 12:532–542PubMedCrossRefGoogle Scholar
  26. Gascuel, O (1997) Mol Biol Evol 14:685–695PubMedCrossRefGoogle Scholar
  27. Goodchild A, Saunders NF, Ertan H, Raftery M, Guilhaus M, Curmi PMG, et al (2004) Mol Microbiol 53:309–321PubMedCrossRefGoogle Scholar
  28. Grundy FJ, Henkin TM (1994) J Bacteriol 176:2108–2110PubMedGoogle Scholar
  29. Hao B, Gong W, Ferguson TK, James CM, Krzycki JA, Chan MK (2002) Science 296:1462–1466PubMedCrossRefGoogle Scholar
  30. Hao B, Zhao G, Kang P, Soares J, Ferguson T, Gallucci J, et al (2004) Chem. Biol. 11:1317–1324PubMedCrossRefGoogle Scholar
  31. Hayashi I, Kawai G, Watanabe, K (1998) J Mol Biol 284:57–69PubMedCrossRefGoogle Scholar
  32. Herring S, Ambrogelly A, Gundllapalli S, O’Donoghue P, Polycarpo CR, Soll D (2007a) FEBS Lett 581:3197–3203Google Scholar
  33. Herring S, Ambrogelly A, Polycarpo CR, Soll D (2007b) Nucleic Acids Res 35:1270–1278Google Scholar
  34. Ibba M, Söll, D (2004) Gen Dev 18:731–738CrossRefGoogle Scholar
  35. James CM, Ferguson TK, Leykam JF, Krzycki JA (2001) J Biol Chem 276:34252–34258PubMedCrossRefGoogle Scholar
  36. Kalyuzhnaya MG, Lapidus A, Ivanova N, Copeland AC, McHardy AC, Szeto E, et al (2008) Nat Biotechnol 26:1029–1034PubMedCrossRefGoogle Scholar
  37. Kavran JM, Gundllapalli S, O’Donoghue P, Englert M, Soll D, Steitz TA (2007) Proc Natl Acad Sci USA 104:11268–11273PubMedCrossRefGoogle Scholar
  38. Kobayashi T, Yanagisawa T, Sakamoto K, Yokoyama, S (2009) J Mol Biol 385:1352–1360PubMedCrossRefGoogle Scholar
  39. Krzycki JA (2004) Curr Opin Chem Biol 8:484–491PubMedCrossRefGoogle Scholar
  40. Krzycki JA (2005) Curr Opin Microbiol 8:706–712PubMedCrossRefGoogle Scholar
  41. Larkins MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al (2007) Bioinformatics 23:2947–2948CrossRefGoogle Scholar
  42. Lee MM, Jiang R, Jain R, Larue RC, Krzycki J, Chan MK (2008) Biochem Biophys Res Commun 374:470–474PubMedCrossRefGoogle Scholar
  43. Li WT, Mahapatra A, Longstaff DG, Bechtel J, Zhao G, Kang PT, et al (2009) J Mol Biol 385:1156–1164PubMedCrossRefGoogle Scholar
  44. Lobanov AV, Kryukov GV, Hatfield DL, Gladyshev VN (2006) Trends Genet 22:357–360PubMedCrossRefGoogle Scholar
  45. Longstaff DG, Blight SK, Zhang L, Green-Church KB, Krzycki JA (2007a) Mol Microbiol 63:229–241Google Scholar
  46. Longstaff DG, Larue RC, Faust JE, Mahapatra A, Zhang L, Green-Church KB, et al (2007b) Proc Natl Acad Sci USA 104:1021–1026Google Scholar
  47. Maeder DL, Anderson I, Brettin TS, Bruce DC, Gilna P, Han CS, et al (2006) J Bacteriol 188:7922–7931PubMedCrossRefGoogle Scholar
  48. Mahapatra A, Patel A, Soares JA, Larue RC, Zhang JK, Metcalf WW, et al (2006) Mol Microbiol 59:56–66PubMedCrossRefGoogle Scholar
  49. Mahapatra A, Srinivasan G, Richter KB, Meyer A, Lienard T, Zhang JK, et al (2007) Mol Microbiol 64:1306–1318PubMedCrossRefGoogle Scholar
  50. Mukai T, Kobayashi T, Hino N, Yanagisawa T, Sakamoto K, Yokoyama, S (2008) Biochem Biophys Res Commun 371:818–822PubMedCrossRefGoogle Scholar
  51. Namy O, Rousset JP, Napthine S, Brierley, I (2004) Mol Cell 13:157–168PubMedCrossRefGoogle Scholar
  52. Neumann H, Peak-Chew SY, Chin JW (2008) Nat Chem Biol doi:10.1038Google Scholar
  53. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, et al (2006) J Bacteriol 188:2262–2274PubMedCrossRefGoogle Scholar
  54. Nozawa K, O’Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, et al (2009) Nature 457:1163–1167PubMedCrossRefGoogle Scholar
  55. Paul, L (1999) Ph.D. Dissertation. Ohio State University, Columbus, OhioGoogle Scholar
  56. Paul L, Ferguson DJ, Krzycki JA (2000) J. Bacteriol. 182:2520–2529PubMedCrossRefGoogle Scholar
  57. Polycarpo C, Ambrogelly A, Berube A, Winbush SM, McCloskey JA, Crain PF, et al (2004) Proc Natl Acad Sci USA 101:12450–12454PubMedCrossRefGoogle Scholar
  58. Polycarpo C, Ambrogelly A, Ruan B, Tumbula-Hansen D, Ataide SF, Ishitani R, et al (2003) Mol Cell 12:287–294PubMedCrossRefGoogle Scholar
  59. Polycarpo CR, Herring S, Berube A, Wood JL, Soll D, Ambrogelly, A (2006) FEBS Letts 580:6695–6700CrossRefGoogle Scholar
  60. Retey, J (2003) Biochim Biophys Acta 1647:179–184PubMedCrossRefGoogle Scholar
  61. Robeson JP, Goldschmidt RM, Curtiss R 3rd (1980) Nature 283:104–106PubMedCrossRefGoogle Scholar
  62. Schimmel P, Beebe, K (2004) Nature 431:257–258PubMedCrossRefGoogle Scholar
  63. Soares JA, Zhang L, Pitsch RL, Kleinholz NM, Jones RB, Wolff JJ, et al (2005) J Biol Chem 280:36962–36969PubMedCrossRefGoogle Scholar
  64. Srinivasan G, James CM, Krzycki JA (2002) Science 296:1459–1462PubMedCrossRefGoogle Scholar
  65. Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, et al. (2009) Environ Microbiol doi:10.1111/j.1462–2920.2008.01825.xGoogle Scholar
  66. Thauer RK (1998) Microbiology 144:2377–2406PubMedCrossRefGoogle Scholar
  67. Théobald-Dietrich A, Frugier M, Giegé R, Rudinger-Thirion, J (2004) Nucl Acid Res 32:1091–1096CrossRefGoogle Scholar
  68. Théobald-Dietrich A, Giegé R, Rudinger-Thirion, J (2005) Biochimie 87:813–817PubMedCrossRefGoogle Scholar
  69. Veit K, Ehlers C, Ehrenreich A, Salmon K, Hovey R, Gunsalus RP, et al (2006) Mol. Genet. Genomics 276:41–55Google Scholar
  70. Villemur R, Lanthier M, Beaudet R, Lepine, F (2006) FEMS Microbiol Rev 30:706–733PubMedCrossRefGoogle Scholar
  71. von der Haar T, Tuite MF (2007) Trends Microbiol 15:78–86PubMedCrossRefGoogle Scholar
  72. Wang L, Xie J, Schultz PG (2006) Annu Rev Biophys Biomol Struct 35:225–249PubMedCrossRefGoogle Scholar
  73. Woese CR, Fox GE (1977) Proc Natl Acad Sci USA 74:5088–5090PubMedCrossRefGoogle Scholar
  74. Woese CR, Kandler O, Wheelis ML (1990) Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  75. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, et al (2006) Nature 443:950–955PubMedCrossRefGoogle Scholar
  76. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008a) Chem Biol 15:187–1197Google Scholar
  77. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008b) J Mol Biol 378:634–652Google Scholar
  78. Yanagisawa T, Ishii R, Fukunaga R, Nureki O, Yokoyama, S (2006) Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1031–1033PubMedCrossRefGoogle Scholar
  79. Zhang Y, Baranov PV, Atkins JF, Gladyshev VN (2005) J Biol Chem 280:20740–20751PubMedCrossRefGoogle Scholar
  80. Zhang Y, Gladyshev VN (2007) Nucleic Acids Res 35:4952–4963PubMedCrossRefGoogle Scholar
  81. Zinoni F, Birkmann A, Stadtman TC, Böck, A (1986) Proc Natl Acad USA 83:4650–4654CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MicrobiologyThe Ohio State UniversityColumbusUSA

Personalised recommendations