Transcript Slippage and Recoding

  • Michael Anikin
  • Vadim Molodtsov
  • Dmitry Temiakov
  • William T. McAllister
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)


Accurate transmission of genetic information during transcription requires that RNA polymerases maintain the correct register of the active site during each cycle of nucleotide incorporation. The RNA:DNA hybrid plays an important role in maintaining this lateral stability, and it has been observed that when the polymerase encounters homopolymeric tracts in the DNA template the transcript and/or the transcription complex may slip along the template, allowing the polymerase to incorporate more or fewer nucleotides than are encoded by the template. This phenomenon has been observed during all phases in the transcription cycle, including initiation, elongation, and termination. Here we review the evidence for transcript slippage in vivo and its implications for miscoding events. In addition, we review experiments that bear upon the mechanistic aspects of transcript slippage and the parameters that may affect its frequency. Aside from its implications for miscoding, transcript slippage may also be involved in regulatory roles during initiation and termination and promote expression of alternative information from the same gene.


Elongation Complex Nucleotide Incorporation Homopolymeric Tract Brownian Ratchet Transcription Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



These studies were supported by grants from the National Institutes of Health (GM38147) and from the Foundation of UMDNJ to WTM. We are grateful to Chuck Turnbough, Don Luse, Sergei Borukhov, Dimitriy Markov, Steven Emanuel, and Maria Savkina for helpful comments, and to Mr. Raymond Castagna for technical support. We thank Craig Martin for pointing out to us the special properties of An:Tn homoduplexes that might provide a basis for transcript slippage, and Irina Artsimovitch and Evgeny Nudler for the gift of EcoRIQ111A.


  1. Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180PubMedCrossRefGoogle Scholar
  2. Ba Y, Tonoki H, Tada M, Nakata D, Hamada J, Moriuchi T (2000) Transcriptional slippage of p53 gene enhanced by cellular damage in rat liver: monitoring the slippage by a yeast functional assay. Mutat Res 447:209–220PubMedCrossRefGoogle Scholar
  3. Bar-Nahum G, Epshtein V, Ruckenstein AE, Rafikov R, Mustaev A, Nudler E (2005) A ratchet mechanism of transcription elongation and its control. Cell 120:183–193PubMedCrossRefGoogle Scholar
  4. Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF (2005) Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 6:R25PubMedCrossRefGoogle Scholar
  5. Benson KF, Person RE, Li FQ, Williams K, Horwitz M (2004) Paradoxical homozygous expression from heterozygotes and heterozygous expression from homozygotes as a consequence of transcriptional infidelity through a polyadenine tract in the AP3B1 gene responsible for canine cyclic neutropenia. Nucleic Acids Res 32:6327–6333PubMedCrossRefGoogle Scholar
  6. Borukhov S, Sagitov V, Josaitis CA, Gourse RL, Goldfarb A (1993) Two modes of transcription initiation in vitro at the rrnB P1 promoter of Escherichia coli. J Biol Chem 268:23477–23482PubMedGoogle Scholar
  7. Burch CL, Danaher RJ, Stein DC (1997) Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J Bacteriol 179:982–986PubMedGoogle Scholar
  8. Chamberlin M, Berg P (1962) Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci USA 48:81–94PubMedCrossRefGoogle Scholar
  9. de Pril R, Fischer DF, van Leeuwen FW (2006) Conformational diseases: an umbrella for various neurological disorders with an impaired ubiquitin-proteasome system. Neurobiol Aging 27:515–523PubMedCrossRefGoogle Scholar
  10. Deng L, Shuman S (1997) Elongation properties of vaccinia virus RNA polymerase: pausing, slippage, 3’ end addition, and termination site choice. Biochemistry 36:15892–15899PubMedCrossRefGoogle Scholar
  11. Fabre E, Dujon B, Richard GF (2002) Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucleic Acids Res 30:3540–3547PubMedCrossRefGoogle Scholar
  12. Garcia-Diaz M, Bebenek K, Krahn JM, Pedersen LC, Kunkel TA (2006) Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell 124:331–342PubMedCrossRefGoogle Scholar
  13. Gerez L, de HA, Hol EM, Fischer DF, van Leeuwen FW, van SH, Benne R (2005) Molecular misreading: the frequency of dinucleotide deletions in neuronal mRNAs for beta-amyloid precursor protein and ubiquitin B. Neurobiol Aging 26:145–155PubMedCrossRefGoogle Scholar
  14. Guajardo R, Gopal V, Lopez P, Sousa R (1998) NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation. J Mol Biol 281:777–792PubMedCrossRefGoogle Scholar
  15. Guo HC, Roberts JW (1990) Heterogeneous initiation due to slippage at the bacteriophage 82 late gene promoter in vitro. Biochemistry 29:10702–10709PubMedCrossRefGoogle Scholar
  16. Hamburgh ME, Curr KA, Monaghan M, Rao VR, Tripathi S, Preston BD, Sarafianos S, Arnold E, Darden T, Prasad VR (2006) Structural determinants of slippage-mediated mutations by human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 281:7421–7428PubMedCrossRefGoogle Scholar
  17. Harley CB, Lawrie J, Boyer HW, Hedgpeth J (1990) Reiterative copying by E. coli RNA polymerase during transcription initiation of mutant pBR322 tet promoters. Nucleic Acids Res 18:547–552PubMedCrossRefGoogle Scholar
  18. Hawryluk PJ, Ujvari A, Luse DS (2004) Characterization of a novel RNA polymerase II arrest site which lacks a weak 3’ RNA-DNA hybrid. Nucleic Acids Res 32:1904–1916PubMedCrossRefGoogle Scholar
  19. He B, Kukarin A, Temiakov D, Chin-Bow ST, Lyakhov DL, Rong M, Durbin RK, McAllister WT (1998) Characterization of an unusual, sequence-specific termination signal for T7 RNA polymerase. J Biol Chem 273:18802–18811PubMedCrossRefGoogle Scholar
  20. Imburgio D, Anikin M, McAllister WT (2002) Effects of substitutions in a conserved DX(2)GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase. J Mol Biol 319:37–51PubMedCrossRefGoogle Scholar
  21. Imburgio D, Rong M, Ma K, McAllister WT (2000) Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry 39:10419–10430PubMedCrossRefGoogle Scholar
  22. Isken O, Maquat LE (2007) Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21:1833–1856PubMedCrossRefGoogle Scholar
  23. Jacques JP, Kolakofsky D (1991) Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev 5:707–713PubMedCrossRefGoogle Scholar
  24. Jacques JP, Susskind MM (1990) Pseudo-templated transcription by Escherichia coli RNA polymerase at a mutant promoter. Genes Dev 4:1801–1810PubMedCrossRefGoogle Scholar
  25. Jin DJ (1996) A mutant RNA polymerase reveals a kinetic mechanisms for the switch between nonproductive stuttering synthesis and productive initiation during promoter clearance. J Biol Chem 271:11659–11667PubMedCrossRefGoogle Scholar
  26. Johnson SJ, Beese LS (2004) Structures of mismatch replication errors observed in a DNA polymerase. Cell 116:803–816PubMedCrossRefGoogle Scholar
  27. Kashkina E, Anikin M, Brueckner F, Pomerantz RT, McAllister WT, Cramer P, Temiakov D (2006) Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol Cell 24:257–266PubMedCrossRefGoogle Scholar
  28. Kolakofsky D, Roux L, Garcin D, Ruigrok RW (2005) Paramyxovirus mRNA editing, the "rule of six" and error catastrophe: a hypothesis. J Gen Virol 86:1869–1877PubMedCrossRefGoogle Scholar
  29. Komissarova N, Kashlev M (1997) RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA. J Biol Chem 272:15329–15338PubMedCrossRefGoogle Scholar
  30. Kopka ML, Lavelle L, Han GW, Ng HL, Dickerson RE (2003) An unusual sugar conformation in the structure of an RNA/DNA decamer of the polypurine tract may affect recognition by RNase H. J Mol Biol 334:653–665PubMedCrossRefGoogle Scholar
  31. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240PubMedCrossRefGoogle Scholar
  32. Laken SJ, Petersen GM, Gruber SB, Oddoux C, Ostrer H, Giardiello FM, Hamilton SR, Hampel H, Markowitz A, Klimstra D, Jhanwar S, Winawer S, Offit K, Luce MC, Kinzler KW, Vogelstein B (1997) Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17:79–83PubMedCrossRefGoogle Scholar
  33. Landick R (2004) Active-site dynamics in RNA polymerases. Cell 116:351–353PubMedCrossRefGoogle Scholar
  34. Landick R (2001) RNA Polymerase Clamps Down. Cell 105:567–570PubMedCrossRefGoogle Scholar
  35. Larsen B, Wills NM, Nelson C, Atkins JF, Gesteland RF (2000) Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc Natl Acad Sci USA 97:1683–1688PubMedCrossRefGoogle Scholar
  36. Larson MH, Greenleaf WJ, Landick R, Block SM (2008) Applied force reveals mechanistic and energetic details of transcription termination. Cell 132:971–982PubMedCrossRefGoogle Scholar
  37. Lee LY, Miyamoto YJ, McIntyre BW, Hook M, McCrea KW, McDevitt D, Brown EL (2002) The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 110:1461–1471PubMedGoogle Scholar
  38. Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91–102PubMedCrossRefGoogle Scholar
  39. Linton MF, Pierotti V, Young SG (1992) Reading-frame restoration with an apolipoprotein B gene frameshift mutation. Proc Natl Acad Sci USA 89:11431–11435PubMedCrossRefGoogle Scholar
  40. Linton MF, Raabe M, Pierotti V, Young SG (1997) Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells. J Biol Chem 272:14127–14132PubMedCrossRefGoogle Scholar
  41. Liu C, Heath LS, Turnbough CL Jr. (1994) Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev 8:2904–2912PubMedCrossRefGoogle Scholar
  42. Macdonald LE, Zhou Y, McAllister WT (1993) Termination and slippage by bacteriophage T7 RNA polymerase. J Mol Biol 232:1030–1047PubMedCrossRefGoogle Scholar
  43. Martin CT, Muller DK, Coleman JE (1988) Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27:3966–3974PubMedCrossRefGoogle Scholar
  44. Meng Q, Turnbough CL Jr, Switzer RL (2004) Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription. Proc Natl Acad Sci U S A 101:10943–10948PubMedCrossRefGoogle Scholar
  45. Newton WA, Beckwith JR, Zipser D, Brenner S (1965) Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol 14:290–296PubMedCrossRefGoogle Scholar
  46. Nudler E, Mustaev A, Lukhtanov E, Goldfarb A (1997) The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89:33–41PubMedCrossRefGoogle Scholar
  47. Pal M, Luse DS (2002) Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol Cell Biol 22:30–40PubMedCrossRefGoogle Scholar
  48. Pal M, Luse DS (2003) The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc Natl Acad Sci USA 100:5700–5705PubMedCrossRefGoogle Scholar
  49. Parker RC (1986) Synthesis of in vitro Co1E1 transcripts with 5’-terminal ribonucleotides that exhibit noncomplementarity with the DNA template. Biochemistry 25:6593–6598PubMedCrossRefGoogle Scholar
  50. Penno C, Hachani A, Biskri L, Sansonetti P, Allaoui A, Parsot C (2006) Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri. Mol Microbiol 62:1460–1468PubMedCrossRefGoogle Scholar
  51. Penno C, Parsot C (2006) Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene, which encodes a component of the Shigella flexneri type III secretion apparatus. J Bacteriol 188:1196–1198PubMedCrossRefGoogle Scholar
  52. Penno C, Sansonetti P, Parsot C (2005) Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol Microbiol 56:204–214PubMedCrossRefGoogle Scholar
  53. Pomerantz RT, Temiakov D, Anikin M, Vassylyev DG, McAllister WT (2006) A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment. Mol Cell 24:245–255PubMedCrossRefGoogle Scholar
  54. Raabe M, Linton MF, Young SG (1998) Long runs of adenines and human mutations. Am J Med Genet 76:101–102PubMedCrossRefGoogle Scholar
  55. Ratinier M, Boulant S, Combet C, Targett-Adams P, McLauchlan J, Lavergne JP (2008) Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. J Gen Virol 89:1569–1578PubMedCrossRefGoogle Scholar
  56. Reeder RH, Lang WH (1997) Terminating transcription in eukaryotes: lessons learned from RNA polymerase I. Trends Biochem Sci 22:473–477PubMedCrossRefGoogle Scholar
  57. Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST (1996) The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 93:3602–3607PubMedCrossRefGoogle Scholar
  58. Sarafianos SG, Das K, Tantillo C, Clark AD, Jr., Ding J, Whitcomb JM, Boyer PL, Hughes SH, Arnold E (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J 20:1449–1461PubMedCrossRefGoogle Scholar
  59. Severinov K, Goldfarb A (1994) Topology of the product binding site in RNA polymerase revealed by transcript slippage at the phage lambda PL promoter. J Biol Chem 269:31701–31705PubMedGoogle Scholar
  60. Sidorenkov I, Komissarova N, Kashlev M (1998) Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol Cell 2:55–64PubMedCrossRefGoogle Scholar
  61. Sousa R (2005) Machinations of a Maxwellian demon. Cell 120:155–156PubMedCrossRefGoogle Scholar
  62. Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34:11211–11216PubMedCrossRefGoogle Scholar
  63. Tamas I, Wernegreen JJ, Nystedt B, Kauppinen SN, Darby AC, Gomez-Valero L, Lundin D, Poole AM, Andersson SG (2008) Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci USA 105:14934–14939PubMedCrossRefGoogle Scholar
  64. Timsit Y (1999) DNA structure and polymerase fidelity. J Mol Biol 293:835–853PubMedCrossRefGoogle Scholar
  65. Tippin B, Kobayashi S, Bertram JG, Goodman MF (2004) To slip or skip, visualizing frameshift mutation dynamics for error-prone DNA polymerases. J Biol Chem 279:45360–45368PubMedCrossRefGoogle Scholar
  66. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547PubMedCrossRefGoogle Scholar
  67. Toulokhonov I, Landick R (2003) The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol Cell 12:1125–1136PubMedCrossRefGoogle Scholar
  68. Turnbough CL Jr, Switzer RL (2008) Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 72:266–300PubMedCrossRefGoogle Scholar
  69. van den Hurk WH, Willems HJ, Bloemen M, Martens GJ (2001) Novel frameshift mutations near short simple repeats. J Biol Chem 276:11496–11498CrossRefGoogle Scholar
  70. van Leeuwen FW, Fischer DF, Kamel D, Sluijs JA, Sonnemans MA, Benne R, Swaab DF, Salehi A, Hol EM (2000) Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiol Aging 21:879–891PubMedCrossRefGoogle Scholar
  71. van Leeuwen FW, Kros JM, Kamphorst W, van SC, de Vos RA (2006) Molecular misreading: the occurrence of frameshift proteins in different diseases. Biochem Soc Trans 34:738–742PubMedCrossRefGoogle Scholar
  72. Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430PubMedCrossRefGoogle Scholar
  73. Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969PubMedCrossRefGoogle Scholar
  74. Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF (1990) Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res 18:3529–3535PubMedCrossRefGoogle Scholar
  75. Wills NM, Atkins JF (2006) The potential role of ribosomal frameshifting in generating aberrant proteins implicated in neurodegenerative diseases. RNA 12:1149–1153PubMedCrossRefGoogle Scholar
  76. Xiong XF, Reznikoff WS (1993) Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo. J Mol Biol 231:569–580PubMedCrossRefGoogle Scholar
  77. Yin H, Wang MD, Svoboda K, Landick R, Block S, Gelles J (1995) Transcription against an applied force. Science 270:1653–1657PubMedCrossRefGoogle Scholar
  78. Yoon C, Prive GG, Goodsell DS, Dickerson RE (1988) Structure of an alternating-B DNA helix and its relationship to A-tract DNA. Proc Natl Acad Sci USA 85:6332–6336PubMedCrossRefGoogle Scholar
  79. Young M, Inaba H, Hoyer LW, Higuchi M, Kazazian HH Jr, Antonarakis SE (1997) Partial correction of a severe molecular defect in hemophilia A, because of errors during expression of the factor VIII gene. Am J Hum Genet 60:565–573PubMedGoogle Scholar
  80. Zang H, Goodenough AK, Choi JY, Irimia A, Loukachevitch LV, Kozekov ID, Angel KC, Rizzo CJ, Egli M, Guengerich FP (2005) DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N2-ethenoguanine. J Biol Chem 280:29750–29764PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michael Anikin
    • 1
  • Vadim Molodtsov
    • 1
  • Dmitry Temiakov
    • 1
  • William T. McAllister
    • 2
  1. 1.Department of Cell Biology, School of Osteopathic MedicineUniversity of Medicine and Dentistry of New JerseyStratfordUSA
  2. 2.Department of Cell Biology, School of Osteopathic MedicineUniversity of Medicine and Dentistry of New JerseyStratfordUSA

Personalised recommendations