The E Site and Its Importance for Improving Accuracy and Preventing Frameshifts

  • Markus Pech
  • Oliver Vesper
  • Hiroshi Yamamoto
  • Daniel N. Wilson
  • Knud H. Nierhaus
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)


The ribosome contains three tRNA binding sites, the A, P, and E sites. Although the E site is separated from the A via the intervening P site, there is striking communication between these sites. This cross-talk plays an important role for the accuracy of the decoding process. Codon–anticodon interaction at the E site seems to be the signal to switch into the post-translocational (POST) state characterized by a low affinity of the A site. This low-affinity state forces the ternary complexes aminoacyl-tRNA•EF-Tu•GTP to enter the A site via the decoding center preventing the selection of non-cognate aminoacyl-tRNAs and incorporation of the incorrect amino acid. This has the important consequence that only 1 in 400 misincorporations affects protein function. Another aspect of the allostery between A and E sites is that during elongation there are always at least two tRNAs present on the ribosome at the same time. Since the tRNAs are firmly bound by the ribosome whereas the mRNA is held predominantly via codon–anticodon interaction, it is the movement of the tRNAs during translocation that pulls the mRNA through the ribosome. In fact, the six base pairs of two adjacent codon–anticodon interactions are instrumental for maintaining the reading frame, and there is evidence that without the codon–anticodon interaction of the E-tRNA the reading frame would be lost at least after the incorporation of about 50 amino acids into the nascent chain.


Ternary Complex Elongation Cycle Leaderless mRNAs Nascent Peptide Chain Accurate Decode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agrawal RK, Spahn CMT, Penczek P, Grassucci RA, Nierhaus KH, Frank J (2000) Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 150:447–459PubMedCrossRefGoogle Scholar
  2. Alexeeva EV, Shpanchenko OV, Dontsova OA, Bogdanov AA, Nierhaus KH (1996) Interaction of mRNA with the Escherichia coli ribosome: Accessibility of phosphorothioate-containing mRNA bound to ribosomes for iodine cleavage. Nucl Acids Res 24:2228–2235PubMedCrossRefGoogle Scholar
  3. Andersson SGE, Buckingham RH, Kurland CG (1984) Does codon composition influence ribosome function? The EMBO J 3: 91–94Google Scholar
  4. Atkins JA, Herr AJ, Massire C, O’Connor M, Ivanov I, Gesteland RF (2000) Poking a hole in the sanctity of the triplet code: Inferences for framing. In: Garret RA, Douthwaite SR, Liljas A, Matheson AT, Moore PB, Noller HF (eds) The ribosome: Structure, function, antibiotics, and cellular interactions. ASM Press, American Society for Microbiology, Washington, DC, pp 369–384Google Scholar
  5. Blaha G, Nierhaus KH (2001) Features and functions of the ribosomal E site. Cold Spring Harbor Symposia on Quantitative Biology 65:135–145CrossRefGoogle Scholar
  6. Chang B, Halgamuge S, Tang SL (2006) Analysis of SD sequences in completed microbial genomes: Non-SD-led genes are as common as SD-led genes. Gene 373:90–99PubMedCrossRefGoogle Scholar
  7. Cochella L, Green R (2005) Fidelity in protein synthesis. Curr Biol 15:R536–R540PubMedCrossRefGoogle Scholar
  8. Curran JF (1993) Analysis of effects of tRNA:message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site. Nucl Acids Res 21:1837–1843PubMedCrossRefGoogle Scholar
  9. Curran JF, Yarus M (1988) Use of tRNA Suppressors To Probe Regulation Of Escherichia coli release factor 2. J Mol Biol 203:75–83PubMedCrossRefGoogle Scholar
  10. Daviter T, Gromadski KB, Rodnina MV (2006) The ribosome’s response to codon-anticodon mismatches. Biochimie 88:1001–1011PubMedCrossRefGoogle Scholar
  11. de Smit MH, van Duin J (2003) Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 331:737–743PubMedCrossRefGoogle Scholar
  12. Di Giacco V, Marquez V, Qin Y, Pech M, Triana-Alonso FJ, Wilson DN, Nierhaus KH (2008) Shine-Dalgarno interaction prevents incorporation of noncognate amino acids at the codon following the AUG. Proc Natl Acad Sci USA 105:10715–10720PubMedCrossRefGoogle Scholar
  13. Dinos G, Kalpaxis DL, Wilson DN, Nierhaus KH (2005) Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu. Nucl Acids Res 33:5291–5296PubMedCrossRefGoogle Scholar
  14. Donly BC, Edgar CD, Adamski FM, Tate WP (1990) Frameshift autoregulation in the gene for Escherichia coli release factor-2 – Partly functional mutants result in frameshift enhancement. Nucl Acids Res 18:6517–6522PubMedCrossRefGoogle Scholar
  15. El’skaya AV, Ovcharenko GV, Palchevskii SS, Petrushenko ZM, Triana-Alonso FJ, Nierhaus KH (1997) Three tRNA binding sites in rabbit liver ribosomes and role of the intrinsic ATPase in 80S ribosomes from higher eukaryotes. Biochemistry 36:10492–10497PubMedCrossRefGoogle Scholar
  16. Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406: 318–322PubMedCrossRefGoogle Scholar
  17. Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5:827–835PubMedCrossRefGoogle Scholar
  18. Geigenmüller U, Nierhaus KH (1990) Significance of the third tRNA binding site, the E site, on E. coli ribosomes for the accuracy of translation: an occupied E site prevents the binding of non-cognate aminoacyl-transfer RNA to the A site. EMBO J 9:4527–4533PubMedGoogle Scholar
  19. Gnirke A, Geigenmüller U, Rheinberger H-J, Nierhaus KH (1989) The allosteric three-site model for the ribosomal elongation cycle. J Biol Chem 264:7291–7301PubMedGoogle Scholar
  20. Gualerzi CO, Brandi L, Caserta E, Garofalo C, Lammi M, La Teana A, Petrelli D, Spurio R, Tomsic J, Pon CL (2001) Initiation factors in the early events of mRNA translation in bacteria. Cold Spring Harb Symp Quant Biol 66:363–76PubMedCrossRefGoogle Scholar
  21. Jenner L, Rees B, Yusupov M, Yusupova G (2007) Messenger RNA conformations in the ribosomal E site revealed by X-ray crystallography. EMBO Rep 8:846–850PubMedCrossRefGoogle Scholar
  22. Jorgensen F, Kurland CG (1990) Processivity errors of gene expression in Escherichia coli. J Mol Biol 215:511–521PubMedCrossRefGoogle Scholar
  23. Kaminishi T, Wilson DN, Takemoto C, Harms JM, Kawazoe M, Schluenzen F, Hanawa-Suetsugu K, Shirouzu M, Fucini P, Yokoyama S (2007) A snapshot of the 30S ribosomal subunit capturing mRNA via the Shine-Dalgarno interaction. Structure 15:289–297PubMedCrossRefGoogle Scholar
  24. Korostelev A, Trakhanov S, Asahara H, Laurberg M, Lancaster L, Noller HF (2007) Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome. Proc Natl Acad Sci USA 104:16840–16843PubMedCrossRefGoogle Scholar
  25. Kurland CG, Jørgensen F, Richter A, Ehrenberg M, Bilgin N, Rojas A.-M (1990) Through the accuracy window. In: Dahlberg A, Hill WE, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) The ribosome-structure, function, and evolution. American Society for Microbiology, Washington, DC, pp 513–526Google Scholar
  26. Leger M, Dulude D, Steinberg SV, Brakier-Gingras L (2007) The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed –1 ribosomal frameshift. Nucl Acids Res 35:5581–5592PubMedCrossRefGoogle Scholar
  27. Liao PY, Gupta P, Petrov AN, Dinman JD, Lee KH (2008) A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting. Nucl Acids Res 36:2619–2629PubMedCrossRefGoogle Scholar
  28. Londei P (2005) Evolution of translational initiation: new insights from the archaea. FEMS Microbiol Rev 29: 185–200PubMedCrossRefGoogle Scholar
  29. Lührmann R, Eckhardt H, Stöffler G (1979) Codon-anticodon interaction at the ribosomal peptidyl-site. Nature 280:423–425PubMedCrossRefGoogle Scholar
  30. Ma J, Campbell A, Karlin S (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733–5745PubMedCrossRefGoogle Scholar
  31. Major LL, Poole ES, Dalphin ME, Mannering SA, Tate WP (1996) Is the in-frame termination signal of the Escherichia coli release factor-2 frameshift site weakened by a particularly poor context? Nucl Acids Res 24: 2673–2678PubMedCrossRefGoogle Scholar
  32. Marquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH (2004) Maintaining the ribosomal reading frame: The influence of the E site during translational regulation of release factor 2. Cell 118:45–55PubMedCrossRefGoogle Scholar
  33. Moll I, Grill S, Gualerzi CO, Blasi U (2002) Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43:239–246PubMedCrossRefGoogle Scholar
  34. Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76:101–124PubMedCrossRefGoogle Scholar
  35. Munro JB, Altman RB, O’Connor N, Blanchard SC (2007) Identification of two distinct hybrid state intermediates on the ribosome. Mol Cell 25:505–517PubMedCrossRefGoogle Scholar
  36. Nierhaus KH (1990) The allosteric three-site model for the ribosomal elongation cycle: features and future. Biochemistry 29:4997–5008PubMedCrossRefGoogle Scholar
  37. Nierhaus KH (1993) Solution of the ribosomal riddle: How the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants. Mol Microbiol 9:661–669PubMedCrossRefGoogle Scholar
  38. Ogle JM, Brodersen DE, Clemons Jr, WM, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902PubMedCrossRefGoogle Scholar
  39. Ogle JM, Ramakrishnan V. 2005 Structural insights into translational fidelity. Annu Rev Biochem 74:129–177PubMedCrossRefGoogle Scholar
  40. Pestova TV, Kolupaeva VG, Lomakin IB, Pilipenko EV, Shatsky IN, Agol VI, Hellen CU T (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc Natl Acad Sci USA 98:7029–7036PubMedCrossRefGoogle Scholar
  41. Poole ES, Brown CM, Tate WP (1995) The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 14:151–158PubMedGoogle Scholar
  42. Remme J, Margus T, Villems R, Nierhaus KH (1989) The third ribosomal tRNA-binding site, the E site, is occupied in native polysomes. Eur J Biochem 183:281–284PubMedCrossRefGoogle Scholar
  43. Rheinberger H.-J, Nierhaus KH (1980) Simultaneous binding of the 3 tRNA molecules by the ribosome of E coli. Biochem Internatl 1:297–303Google Scholar
  44. Rheinberger H.-J, Nierhaus KH (1983) Testing an alternative model for the ribosomal peptide elongation cycle. Proc Natl Acad Sci USA 80:4213–4217PubMedCrossRefGoogle Scholar
  45. Rheinberger H.-J, Nierhaus KH 1986a. Adjacent codon-anticodon interactions of both tRNAs present at the ribosomal A and P or P and E sites. FEBS Lett 204:97–99Google Scholar
  46. Rheinberger H.-J, Nierhaus KH 1986b Allosteric interactions between the ribosomal transfer RNA-binding sites A and E. J Biol Chem 261:9133–9139Google Scholar
  47. Rheinberger H.-J, Sternbach H, Nierhaus KH (1981) Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci USA 78:5310–5314PubMedCrossRefGoogle Scholar
  48. Rheinberger H.-J, Sternbach H, Nierhaus KH (1986) Codon-anticodon interaction at the ribosomal E site. J Biol Chem 261:9140–9143PubMedGoogle Scholar
  49. Sanders CL, Curran JF (2007) Genetic analysis of the E site during RF2 programmed frameshifting. RNA 13: 1483–1491PubMedCrossRefGoogle Scholar
  50. Saruyama H, Nierhaus KH (1986) Evidence that the three-site model for ribosomal elongation cycle is also valid in the archaebacterium Halobacterium halobium. Mol Gen Genet 204:221–228CrossRefGoogle Scholar
  51. Schilling-Bartetzko S, Bartetzko A, Nierhaus KH (1992) Kinetic and thermodynamic parameters for transfer RNA binding to the ribosome and for the translocation reaction. J Biol Chem 267:4703–4712PubMedGoogle Scholar
  52. Schmeing TM, Moore PB, Steitz TA (2003) Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9: 1345–1352PubMedCrossRefGoogle Scholar
  53. Selmer M, Dunham C, Murphy FV 4th, Weixlbaumer A, Petry S, Kelley A, Weir J, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942PubMedCrossRefGoogle Scholar
  54. Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE, Jr (1999) Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 290:607–614PubMedCrossRefGoogle Scholar
  55. Spahn CM, Blaha G, Agrawal RK, Penczek P, Grassucci RA, Trieber CA, Connell SR, Taylor DE, Nierhaus KH, Frank J (2001) Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol Cell 7:1037–1045PubMedCrossRefGoogle Scholar
  56. Stark H, Rodnina MV, Wieden HJ, Zemlin F, Wintermeyer W, Van Heel M (2002) Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat Struct Biol 15:15–20Google Scholar
  57. Stenstrom CM, Jin H, Major LL, Tate WP, Isaksson LA (2001) Codon bias at the 3-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 263: 273–284PubMedCrossRefGoogle Scholar
  58. Szaflarski W, Vesper O, Teraoka Y, Plitta B, Wilson DN, Nierhaus KH (2008) New features of the ribosome and ribosomal inhibitors: Non-enzymatic recycling, misreading and back-translocation. J Mol Biol 380:193–205PubMedCrossRefGoogle Scholar
  59. Tats A, Remm M, Tenson T (2006) Highly expressed proteins have an increased frequency of alanine in the second amino acid position. BMC Genomics 7:28PubMedCrossRefGoogle Scholar
  60. Triana-Alonso FJ, Chakraburtty K, Nierhaus KH (1995) The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J Biol Chem 270:20473–20478PubMedCrossRefGoogle Scholar
  61. Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal RK, Frank J (2002) Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21: 3557–3567PubMedCrossRefGoogle Scholar
  62. Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114: 123–134PubMedCrossRefGoogle Scholar
  63. Varshavsky A (1996) The N-end rule: Functions, mysteries, uses – Inaugural paper. Proc Natl Acad Sci USA 93:12142–12149PubMedCrossRefGoogle Scholar
  64. Vimberg V, Tats A, Remm M, Tenson T (2007) Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 8: 100PubMedCrossRefGoogle Scholar
  65. Warner JR, Rich A (1964) The number of soluble RNA molecules on reticulocyte polyribosomes. Proc Natl Acad Sci USA 51: 1134–1141PubMedCrossRefGoogle Scholar
  66. Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: 2, 1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spring Harbor Symp Quant Biol 52:687–693PubMedCrossRefGoogle Scholar
  67. Weiss RB, Dunn DM, Dalhberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3 end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7:1503–1507PubMedGoogle Scholar
  68. Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH (2002) Dissection of the mechanism for the stringent factor RelA. Mol Cell 10:779–788PubMedCrossRefGoogle Scholar
  69. Wilson DN, Nierhaus KH (2003) The ribosome through the looking glass. Angew Chem Int Ed Engl 42:3464–3486PubMedCrossRefGoogle Scholar
  70. Wilson DN, Nierhaus KH (2006) The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis. Cell Mol Life Sci 63:2725–2737PubMedCrossRefGoogle Scholar
  71. Wurmbach P, Nierhaus KH (1979) Codon-anticodon interaction at the ribosomal P(peptidyl)-tRNA site. Proc Natl Acad Sci USA 76:2143–2147PubMedCrossRefGoogle Scholar
  72. Yusupova G, Jenner L, Rees B, Moras D, Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444:391–394PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Markus Pech
    • 1
  • Oliver Vesper
    • 2
  • Hiroshi Yamamoto
    • 2
  • Daniel N. Wilson
    • 3
  • Knud H. Nierhaus
    • 2
  1. 1.Max-Planck-Institut für Molekulare GenetikBerlinGermany
  2. 2.Max-Planck-Institut für Molekulare GenetikBerlinGermany
  3. 3.Gene Center, Ludwig-Maximilians-Universität MünchenMünchenGermany

Personalised recommendations