Advertisement

Sequences Promoting Recoding Are Singular Genomic Elements

  • Pavel V. Baranov
  • Olga Gurvich
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)

Abstract

The distribution of sequences which induce non-standard decoding, especially of shift-prone sequences, is very unusual. On one hand, since they can disrupt standard genetic readout, they are avoided within the coding regions of most genes. On the other hand, they play important regulatory roles for the expression of those genes where they do occur. As a result, they are preserved among homologs and exhibit deep phylogenetic conservation. The combination of these two constraints results in a characteristic distribution of recoding sequences across genomes: they are highly conserved at specific locations while they are very rare in other locations. We term such sequences singular genomic elements to signify their rare occurrence and biological importance.

Keywords

Stop Codon Codon Bias Codon Usage Bias Singular Element Codon Reassignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

P.V.B. thanks Science Foundation Ireland for Support.

References

  1. Aigner S, Lingner J, Goodrich KJ, Grosshans TA, Shevchenko A, Mann, M, Cech TR (2000). Euplotes telomerase contains a La motif protein produced by apparent translational frameshifting. EMBO J 19:6230–6239PubMedCrossRefGoogle Scholar
  2. Asakura T, Sasaki T, Nagano F, Satoh A, Obaishi H, Nishioka H, Imamura H, Hotta K, Tanaka K, Nakanishi, H, Takai, Y (1998) Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 16:121–130PubMedCrossRefGoogle Scholar
  3. Atkins JF, Baranov PV, Fayet O, Herr AJ, Howard MT, Ivanov IP, Matsufuji S, Miller WA, Moore B, Prere MF, Wills NM, Zhou J, Gesteland RF (2001) Overriding standard decoding: implications of recoding for ribosome function and enrichment of gene expression. Cold Spr Harb Symp Quant Biol 66:217–232CrossRefGoogle Scholar
  4. Baranov PV, Fayet O, Hendrix RW, Atkins JF (2006) Recoding in bacteriophages and bacterial IS elements. Trends Genet 22:174–181PubMedCrossRefGoogle Scholar
  5. Baranov PV, Gesteland RF, Atkins JF (2002) Release factor 2 frameshifting sites in different bacteria. EMBO Rep 3:373–377PubMedCrossRefGoogle Scholar
  6. Baranov PV, Gesteland RF, Atkins JF (2004) P-site tRNA is a crucial initiator of ribosomal frameshifting. RNA 10:221–230PubMedCrossRefGoogle Scholar
  7. Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT (2005) Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virol 332:498–510CrossRefGoogle Scholar
  8. Bekaert M, Atkins JF, Baranov PV (2006) ARFA: A program for annotating bacterial release factor genes, including prediction of programmed ribosomal frameshifting. Bioinformatics 22:2463–2465PubMedCrossRefGoogle Scholar
  9. Belcourt MF, Farabaugh PJ (1990) Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339–352PubMedCrossRefGoogle Scholar
  10. Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11Besecker MI, Furness CL, Coen DM, Griffiths A (2007) Expression of extremely low levels of thymidine kinase from an acyclovir-resistant herpes simplex virus mutant supports reactivation from latently infected mouse trigeminal ganglia. J Virol 81:8356–60PubMedCrossRefGoogle Scholar
  11. Björk GR, Huang B, Persson OP, Bystrom AS (2007) A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA 13:1245–1255PubMedCrossRefGoogle Scholar
  12. Blinkowa AL, Walker JR (1990) Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame. Nucl Acids Res 18:1725–1729PubMedCrossRefGoogle Scholar
  13. Brierley I, Digard, P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547PubMedCrossRefGoogle Scholar
  14. Brierley I, Rolley NJ, Jenner AJ, Inglis SC (1991) Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal. J Mol Biol 220:889–902PubMedCrossRefGoogle Scholar
  15. Capecchi MR, Klein HA (1970) Release factors mediating termination of complete proteins. Nature 226:1029–1033PubMedCrossRefGoogle Scholar
  16. Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA surveillance pathway. Ann Rev Biochem 76:51–74PubMedCrossRefGoogle Scholar
  17. Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci USA 101:3480–3485PubMedCrossRefGoogle Scholar
  18. Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer, E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787PubMedCrossRefGoogle Scholar
  19. Craigen WJ, Caskey CT (1986) Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322:273–275PubMedCrossRefGoogle Scholar
  20. Craigen WJ, Cook RG, Tate WP, Caskey CT (1985) Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 82:3616–3620PubMedCrossRefGoogle Scholar
  21. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190PubMedCrossRefGoogle Scholar
  22. Curran JF (1993) Analysis of effects of tRNA:message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site. Nucleic Acids Res 21:1837–1843PubMedCrossRefGoogle Scholar
  23. Curran JF, Yarus M (1988) Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2. J Mol Biol 203:75–83PubMedCrossRefGoogle Scholar
  24. Elion GB (1982) Mechanism of action and selectivity of acyclovir. Am J Med 73:7–13PubMedCrossRefGoogle Scholar
  25. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian Micro RNAs on mRNA repression and evolution. Science 310:1817–1821PubMedCrossRefGoogle Scholar
  26. Fedorov A, Saxonov S, Gilbert W (2002) Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Res 30:1192–1197PubMedCrossRefGoogle Scholar
  27. Flower AM, McHenry CS (1990) The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA 87:3713–3717Griffiths A, Link MA, Furness CL, Coen DM (2006) Low-level expression and reversion both contribute to reactivation of herpes simplex virus drug-resistant mutants with mutations on homopolymeric sequences in thymidine kinase. J Virol 80:6568–6574PubMedCrossRefGoogle Scholar
  28. Gurvich OL, Baranov PV, Gesteland RF, Atkins JF (2005) Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli. J Bacteriol 187:4023–4032PubMedCrossRefGoogle Scholar
  29. Gurvich OL, Baranov PV, Zhou J, Hammer AW, Gesteland RF, Atkins JF (2003) Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli. EMBO J 22:5941–5950PubMedCrossRefGoogle Scholar
  30. Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353PubMedCrossRefGoogle Scholar
  31. Herold J, Siddell SG (1993) An ‘elaborated’ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucl Acids Res 21:5838–5842PubMedCrossRefGoogle Scholar
  32. Horsburgh BC, Kollmus H, Hauser, H, Coen DM (1996) Translational recoding induced by G-rich mRNA sequences that form unusual structures. Cell 86:949–959PubMedCrossRefGoogle Scholar
  33. Hu ST, Lee LC, Lei GS (1996) Detection of an IS2-encoded 46-kilodalton protein capable of binding terminal repeats of IS2. J Bacteriol 178:5652–5659PubMedGoogle Scholar
  34. Huang Y, Lau SK, Woo PC, Yuen KY (2008) CoVDB: a comprehensive database for comparative analysis of coronavirus genes and genomes. Nucl Acids Res 36:D504–511PubMedCrossRefGoogle Scholar
  35. Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146:1–21PubMedCrossRefGoogle Scholar
  36. Ivanov IP, Atkins JF (2007) Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: Close to 300 cases reveal remarkable diversity despite underlying conservation. Nucleic Acids Res 35:1842–1858PubMedCrossRefGoogle Scholar
  37. Jacobs JL, Belew AT, Rakauskaite R, Dinman JD (2007) Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucl Acids Res 35:165–174PubMedCrossRefGoogle Scholar
  38. Karlin S, Mrazek J, Campbell, A, Kaiser, D (2001) Characterizations of highly expressed genes of four fast-growing bacteria. J Bacteriol 183:5025–5040PubMedCrossRefGoogle Scholar
  39. Kisselev LL, Buckingham RH (2000) Translational termination comes of age. Trends Biochem Sci 25:561–566PubMedCrossRefGoogle Scholar
  40. Klobutcher LA (2005) Sequencing of random Euplotes crassus macronuclear genes supports a high frequency of +1 translational frameshifting. Eukaryotic Cell 4:2098–2105PubMedCrossRefGoogle Scholar
  41. Klobutcher LA, Farabaugh PJ (2002) Shifty ciliates: frequent programmed translational frameshifting in euplotids. Cell 111:763–766PubMedCrossRefGoogle Scholar
  42. Kurland, C (1979) Reading frame errors on ribosomes. In: Celis J, Smith JD (eds) Nonsense mutations and tRNA suppressors, Academic Press, London, pp 97–108Google Scholar
  43. Kurland C, Gallant J (1996) Errors of heterologous protein expression. Curr Opinion Biotechnol 7:489–493CrossRefGoogle Scholar
  44. Kurland CG, Hughes D, Ehrenberg M (1996) Limitations of translational accuracy. In Escherichia coli and Salmonella typhimurium: Cellular and molecular biology, ASM Press, Washington, DC, pp 979–1004Lainé S, Thouard A, Komar AA, Rossignol JM (2008) Ribosome can resume the translation in both +1 or –1 frames after encountering an AGA cluster in Escherichia coli. Gene 412:95–101Google Scholar
  45. Liao PY, Gupta P, Petrov AN, Dinman JD, Lee KH (2008) A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting. Nucl Acids Res 36:2619–2629PubMedCrossRefGoogle Scholar
  46. Lill R, Wintermeyer W (1987) Destabilization of codon-anticodon interaction in the ribosomal exit site. J Mol Biol 196:137–148PubMedCrossRefGoogle Scholar
  47. Ma J, Campbell A, Karlin S (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733–5745PubMedCrossRefGoogle Scholar
  48. Major LL, Poole ES, Dalphin ME, Mannering SA, Tate WP (1996) Is the in-frame termination signal of the Escherichia coli release factor–2 frameshift site weakened by a particularly poor context? Nucl Acids Res 24:2673–2678PubMedCrossRefGoogle Scholar
  49. Marquez V, Wilson DN, Tate WP, Triana-Alonso, F, Nierhaus KH (2004) Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118:45–55PubMedCrossRefGoogle Scholar
  50. Mejlhede N, Atkins JF, Neuhard, J (1999) Ribosomal −1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG. J Bacteriol 181:2930–2937Moon S, Byun Y, Han K (2007) FSDB: a frameshift signal database. Computat Biol Chem 31:298–302PubMedGoogle Scholar
  51. Morris DK, Lundblad, V (1997) Programmed translational frameshifting in a gene required for yeast telomere replication. Curr Biol 7:969–976PubMedCrossRefGoogle Scholar
  52. Mottagui-Tabar, S, Isaksson LA (1998) The influence of the 5 codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium. Gene 212:189–196PubMedCrossRefGoogle Scholar
  53. Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, Oliveira JL, Santos MA (2007) Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS ONE 2:e847PubMedCrossRefGoogle Scholar
  54. O’Connor M (2002) Imbalance of tRNA(Pro) isoacceptors induces +1 frameshifting at near-cognate codons. Nucl Acids Res 30:759–765PubMedCrossRefGoogle Scholar
  55. Parker J (1989) Errors and alternatives in reading the universal genetic code. Microbiol Rev 53:273–298PubMedGoogle Scholar
  56. Pavlov MY, Freistroffer DV, Dincbas V, MacDougall J, Buckingham RH, Ehrenberg, M (1998) A direct estimation of the context effect on the efficiency of termination. J Mol Biol 284:579–590PubMedCrossRefGoogle Scholar
  57. Plant EP, Perez-Alvarado GC, Jacobs JL, Mukhopadhyay B, Hennig, M, Dinman JD (2005) A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol 3:e172PubMedCrossRefGoogle Scholar
  58. Poole ES, Major LL, Mannering SA, Tate WP (1998) Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucl Acids Res 26:954–960Sanders CL, Curran JF (2007) Genetic analysis of the E site during RF2 programmed frameshifting. RNA 13:1483–1491PubMedCrossRefGoogle Scholar
  59. Saulquin X, Scotet E, Trautmann L, Peyrat MA, Halary F, Bonneville, M, Houssaint, E (2002) +1 Frameshifting as a novel mechanism to generate a cryptic cytotoxic T lymphocyte epitope derived from human interleukin 10. J Exper Med 195:353–358CrossRefGoogle Scholar
  60. Scolnick E, Tompkins R, Caskey, T, Nirenberg, M (1968) Release factors differing in specificity for terminator codons. Proc Natl Acad Sci USA 61:768–774PubMedCrossRefGoogle Scholar
  61. Shah AA, Giddings MC, Parvaz JB, Gesteland RF, Atkins JF, Ivanov IP (2002) Computational identification of putative programmed translational frameshift sites. Bioinformatics 18:1046–1053PubMedCrossRefGoogle Scholar
  62. Shine J, Dalgarno L (1975) Determinant of cistron specificity in bacterial ribosomes. Nature 254:34–38PubMedCrossRefGoogle Scholar
  63. Sipley J, Goldman E (1993) Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli. Proc Natl Acad Sci USA 90:2315–2319PubMedCrossRefGoogle Scholar
  64. Spanjaard RA, Chen K, Walker JR, van Duin J (1990) Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA(Arg). Nucl Acids Res 18:5031–5036PubMedCrossRefGoogle Scholar
  65. Spanjaard RA, van Duin J (1988) Translation of the sequence AGG-AGG yields 50% ribosomal frameshift. Proc. Natl Acad Sci USA 85:7967–7971PubMedCrossRefGoogle Scholar
  66. Stoletzki N, Eyre-Walker A (2007) Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol 24:374–381PubMedCrossRefGoogle Scholar
  67. Su MC, Chang CT, Chu CH, Tsai CH, Chang KY (2005) An atypical RNA pseudoknot stimulator and an upstream attenuation signal for −1 ribosomal frameshifting of SARS coronavirus. Nucl Acids Res 33:4265–4275PubMedCrossRefGoogle Scholar
  68. Taliaferro D, Farabaugh PJ (2007) An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting. RNA 13:606–613Theis C, Reeder J, Giegerich R (2008) KnotInFrame: prediction of –1 ribosomal frameshift events.Nucl Acids Res 36:6013–6020PubMedCrossRefGoogle Scholar
  69. Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 87:2516–2520Vallabhaneni H, Fan-Minogue H, Bedwell DM, Farabaugh PJ (2009) Connection between stop codon reassignment and frequent use of shifty stop frameshifting. RNA 15:889–897PubMedCrossRefGoogle Scholar
  70. Wan XF, Xu D, Kleinhofs, A, Zhou, J (2004) Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evol Biol 4:19PubMedCrossRefGoogle Scholar
  71. Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Slippery runs, shifty stops, backward steps, and forward hops: −2, −1, +1, +2, +5, and +6 ribosomal frameshifting. Cold Spr Harb Symp Quant Biol 52:687–693CrossRefGoogle Scholar
  72. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gesteland RF (1988) Reading frame switch caused by base-pair formation between the 3 end of 16S rRNA and the mRNA during elongation of protein synthesis in Escherichia coli. EMBO J 7:1503–1507PubMedGoogle Scholar
  73. Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956PubMedCrossRefGoogle Scholar
  74. Zimmer M, Sattelberger E, Inman RB, Calendar, R, Loessner MJ (2003) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol Microbiol 50:303–317PubMedCrossRefGoogle Scholar
  75. Zook MB, Howard MT, Sinnathamby G, Atkins JF, Eisenlohr LC (2006) Epitopes derived by incidental translational frameshifting give rise to a protective CTL response. J Immunol 176:6928–6934PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Biochemistry DepartmentUniversity College CorkCorkIreland
  2. 2.Cork Cancer Research CentreUniversity College CorkCorkIreland

Personalised recommendations