Advertisement

Autoregulatory Frameshifting in Antizyme Gene Expression Governs Polyamine Levels from Yeast to Mammals

  • Ivaylo P. Ivanov
  • Senya Matsufuji
Chapter
Part of the Nucleic Acids and Molecular Biology book series (NUCLEIC, volume 24)

Abstract

Polyamines play an important role in a variety of biological processes. Antizyme is a key regulator of polyamine levels in eukaryotes through its inhibitory role on polyamine biosynthesis and transport. Antizyme mRNA expression requires +1 ribosomal frameshifting linking two partially overlapping open reading frames. The frameshifting is enhanced in the presence of elevated levels of polyamines thus closing an autoregulatory loop. The ribosomal frameshift site, which is present at the end of the first open reading frame, is usually surrounded by cis-acting stimulators of frameshifting. The extraordinary antiquity of the antizyme gene has enabled it to acquire large number of diverse cis-acting stimulators in different evolutionary branches. Our current understanding of the frameshifting mechanism suggests that termination of translation at the end of the first open reading frame is a crucial component of the polyamine sensor.

Keywords

Stop Codon Alternative Polyadenylation Site Frameshift Site Antizyme Inhibitor Shift Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank John F. Atkins for writing the introductory section. Salary support for I.P.I. was derived from funds from Science Foundation Ireland.

References

  1. Atkins JF, Lewis JB, Anderson CW, Gesteland RF (1975) J Biol Chem 250:5688–5695PubMedGoogle Scholar
  2. Auvinen M, Paasinen A, Andersson LC, Hölttä E (1992) Nature 360:355–358PubMedCrossRefGoogle Scholar
  3. Balasegaram M, Balasegaram S, Malvy D, Millet P (2008) PLoS Negl Trop Dis 2:e234PubMedCrossRefGoogle Scholar
  4. Bekaert M, Atkins JF, Baranov PV (2006) Bioinformatics 22:2463–2465PubMedCrossRefGoogle Scholar
  5. Blume-Peytavi U, Hahn S (2008) Dermatol Ther 21:329–339Google Scholar
  6. Burns MR, Graminski GF, Weeks RS, Chen, O’Brien TG (2009) J Med Chem 52:1983–1993Google Scholar
  7. Coffino P (2001) Nat Rev Mol Cell Biol 2:188–194PubMedCrossRefGoogle Scholar
  8. Cohen S (1998) A Guide to the Polyamines. Oxford University Press, New York, 559ppGoogle Scholar
  9. Cridge AG, Major LL, Mahagaonkar AA, Poole ES, Isaksson LA, Tate WP (2006) Nucleic Acids Res 34:1959–1973PubMedCrossRefGoogle Scholar
  10. Dakin HD (1906) J Biol Chem 1:171–176Google Scholar
  11. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Science 227:1485–1487PubMedCrossRefGoogle Scholar
  12. Farabaugh PJ, Zhao H, Vimaladithan A (1993) Cell 74:93–103PubMedCrossRefGoogle Scholar
  13. Fitzgerald C, Sikora C, Lawson V, Dong K, Cheng M, Oko R, van der Hoorn FA J (2006) J Biol Chem 281:38172–80PubMedCrossRefGoogle Scholar
  14. Fong WF, Heller JS, Canellakis ES (1976) Biochim Biophys Acta 428:456–465PubMedCrossRefGoogle Scholar
  15. Fujita K, Murakami Y, Hayashi S (1982) Biochem J 204:647–652PubMedGoogle Scholar
  16. Gandre S, Bercovich Z, Kahana C (2003) Mitochondrion 2:245–256PubMedCrossRefGoogle Scholar
  17. Gerner EW, Meyskens FL (2009) Clin Cancer Res 15:758–761Google Scholar
  18. Gruendler C, Lin Y, Farley J, Wang T (2001) J Biol Chem 276:46533–46543PubMedCrossRefGoogle Scholar
  19. Hansen TM, Baranov PV, Ivanov IP, Gesteland RF, Atkins JF (2003) EMBO Rep 4:499–504PubMedCrossRefGoogle Scholar
  20. Heller JS, Fong WF, Canellakis ES (1976) Proc Natl Acad Sci USA 73:1858–1862PubMedCrossRefGoogle Scholar
  21. Herr AJ, Nelson CC, Wills NM, Gesteland RF, Atkins JF (2001) J Mol Biol 309:1029–1048PubMedCrossRefGoogle Scholar
  22. Herr AJ, Wills NM, Nelson CC, Gesteland RF, Atkins JF (2004) J Biol Chem 279:11081–11087PubMedCrossRefGoogle Scholar
  23. Hogarty MD, Norris MD, Davis K, Liu X, Evageliou NF, Hayes CS, Pawel B, Guo R, Zhao H, Sekyere E, Keating J, Thomas W, Cheng NC, Murray J, Smith J, Sutton R, Venn N, London WB, Buxton A, Gilmour SK, Marshall GM, Haber M (2008) Cancer Res 68:9735–9745PubMedCrossRefGoogle Scholar
  24. Howard MT, Shirts BH, Zhou J, Carlson CL, Matsufuji S, Gesteland RF, Weeks RS, Atkins JF (2001) Genes Cells 6:931–941PubMedCrossRefGoogle Scholar
  25. Huang Y, Higginson DS, Hester L, Park MH, Snyder SH (2007) Proc Natl Acad Sci USA 104:4194–4199PubMedCrossRefGoogle Scholar
  26. Ike A, Ohta H, Onishi M, Iguchi N, Nishimune Y, Nozaki M (2004) FEBS Lett 559:159–164PubMedCrossRefGoogle Scholar
  27. Ivanov IP, Gesteland RF, Atkins JF (1998a) Genomics 52:119–129Google Scholar
  28. Ivanov IP, Gesteland RF, Matsufuji S, Atkins JF (1998b) RNA 4:1230–1238Google Scholar
  29. Ivanov IP, Rohrwasser A, Terreros DA, Gesteland RF, Atkins JF (2000a) Proc Natl Acad Sci USA 97:4808–4813Google Scholar
  30. Ivanov IP, Matsufuji S, Murakami Y, Gesteland RF, Atkins JF (2000b) EMBO J 19:1907–1917PubMedCrossRefGoogle Scholar
  31. Ivanov IP, Anderson CB, Gesteland RF, Atkins JF (2004) J Mol Biol 339:495–504PubMedCrossRefGoogle Scholar
  32. Ivanov IP, Gesteland RF, Atkins JF (2006) RNA 12:332–337PubMedCrossRefGoogle Scholar
  33. Ivanov IP, Atkins JF (2007) Nucleic Acids Res 35:(1842)–1858Google Scholar
  34. Ivanov IP, Pittman AJ, Chien CB, Gesteland RF, Atkins JF (2007) Gene 387:87–92PubMedCrossRefGoogle Scholar
  35. Ivanov IP, Loughran G, Atkins JF (2008) Proc Natl Acad Sci USA 105:10079–10084PubMedCrossRefGoogle Scholar
  36. Kajiwara K, Nagawawa H, Shimizu-Nishikawa S, Ookuri T, Kimura M, Sugaya E (1996) Biochem Biophys Res Commun 219:795–799PubMedCrossRefGoogle Scholar
  37. Kanerva K, Lappalainen J, Mäkitie LT, Virolainen S, Kovanen PT, Andersson LC (2009) PLoS One. 4.e6858Google Scholar
  38. Karamysheva ZN, Karamyshev AL, Ito K, Yokogawa T, Nishikawa K, Nakamura Y, Matsufuji S (2003) Nucleic Acids Res 31:5949–5956PubMedCrossRefGoogle Scholar
  39. Lim SK, Gopalan G (2007) Oncogene 26:6593–603PubMedCrossRefGoogle Scholar
  40. López-Contreras AJ, López-Garcia C, Jiménez-Cervantes C, Cremades A, Peñafiel R (2006) J Biol Chem 281:30896–30906PubMedCrossRefGoogle Scholar
  41. López-Contreras AJ, Sánchez-Laorden BL, Ramos-Molina B, de la Morena ME, Cremades A, Peñafiel R (2009) J Cell Biochem 107:732–740Google Scholar
  42. Mäkitie LT, Kanerva K, Sankila A, Andersson LC (2009) Histochem Cell Biol [Epub ahead of print]Google Scholar
  43. Mangold U, Hayakawa H, Coughlin M, Münger K, Zetter BR (2008) Oncogene 27:604–613PubMedCrossRefGoogle Scholar
  44. Matsufuji S, Miyazaki Y, Kanamoto R, Kameji T, Murakami Y, Baby TG, Fujita K, Ohno T, Hayashi S (1990) J Biochem 108:365–371PubMedGoogle Scholar
  45. Matsufuji S, Matsufuji T, Miyazaki Y, Murakami Y, Atkins JF, Gesteland RF, Hayashi S (1995) Cell 80:51–60PubMedCrossRefGoogle Scholar
  46. Matsufuji S, Matsufuji T, Wills NM, Gesteland RF, Atkins JF (1996) EMBO J 1996 15:1360–1370Google Scholar
  47. Mitchell JL, Judd GG, Bareyal-Leyser A, Ling SY (1994) Biochem J 299 ( Pt 1):19–22PubMedGoogle Scholar
  48. Mitchell JL, Judd GG (1998) Biochem Soc Trans 26:591–595PubMedGoogle Scholar
  49. Mitrasinovic PM (2006) J Struct Biol 153:207–222PubMedCrossRefGoogle Scholar
  50. Miyazaki Y, Matsufuji S, Hayashi S (1992) Gene 113:191–197PubMedCrossRefGoogle Scholar
  51. Murai N, Shimizu A, Murakami, Y, Matsufuji S (2009) J Cell Biochem [Epub ahead of print]Google Scholar
  52. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Nature 360:597–599Google Scholar
  53. Murakami Y, Matsufuji S, Miyazaki Y, Hayashi S (1994) Biochem J 304(Pt 1):183–187PubMedGoogle Scholar
  54. Murakami Y, Ichiba T, Matsufuji S, Hayashi S (1996) J Biol Chem 271:3340–3342PubMedCrossRefGoogle Scholar
  55. Murakami Y, Suzuki J, Samejima K, Kikuchi K, Hascilowicz T, Murai N, Matsufuji S, Oka T (2009) Exp Cell Res 315:2301–2311Google Scholar
  56. Namy O, Hatin I, Rousset JP (2001) EMBO Rep 2:787–793PubMedCrossRefGoogle Scholar
  57. Namy O, Galopier A, Martini C, Matsufuji S, Fabret C, Rousset JP (2008) Nat Cell Biol 10:1069–1075PubMedCrossRefGoogle Scholar
  58. Newman RM, Mobascher A, Mangold U, Koike C, Diah S, Schmidt M, Finley D, Zetter BR (2004) J Biol Chem 279, 41504–511PubMedCrossRefGoogle Scholar
  59. Palanimurugan R, Scheel H, Hofmann K, Dohmen RJ (2004) EMBO J 23:4857–4867PubMedCrossRefGoogle Scholar
  60. Park MH, Lee YB, Joe YA (1997) Biol Signals 6:115–123. ReviewPubMedCrossRefGoogle Scholar
  61. Petros LM, Howard MT, Gesteland RF, Atkins JF (1995) Biochem Biophys Res Commun 338:1478–1489CrossRefGoogle Scholar
  62. Porat Z, Landau G, Bercovich Z, Krutauz D, Glickman M, Kahana C (2008) J Biol Chem 283:4528–4534PubMedCrossRefGoogle Scholar
  63. Poulin R, Coward JK, Lakanen JR, Pegg AE (1993) J Biol Chem 268:4690–4698PubMedGoogle Scholar
  64. Rosenheim O (1924) Biochem J 18:1253–1262Google Scholar
  65. Saini P, Elyer DE, Green R, Dever TE (2009) Nature 459:118–121Google Scholar
  66. Saito T, Hascilowicz T, Ohkido I, Kikuchi Y, Okamoto H, Hayashi S, Murakami Y, Matsufuji S (2000) Biochem J 345:99–106PubMedCrossRefGoogle Scholar
  67. Sakata K, Kashiwagi K, Igarashi K (2000) Biochem J 347(Pt 1):297–303PubMedCrossRefGoogle Scholar
  68. Sanderson L, Dogruel M, Rodgers J, Bradley B, Thomas SA (2008) J Neurochem 107:1136–1146PubMedGoogle Scholar
  69. Schnier J, Schwelberger HG, Smit-McBride Z, Kang HA, Hershey JW (1991) Mol Cell Biol 11:3105–3114PubMedGoogle Scholar
  70. Seiler N, Raul F (2005) J Cell Mol Med 9:623–642PubMedCrossRefGoogle Scholar
  71. Simoneau AR, Gerner EW, Nagle R, Ziogas A, Fujikawa-Brooks S, Yerushalmi H, Ahlering TE, Lieberman R, McLaren CE, Anton-Culver H, Meyskens FL (2008) Cancer Epidemiol Biomarkers Prev 17:292–299Google Scholar
  72. Skuzeski JM, Nichols LM, Gesteland RF, Atkins JF (1991) J Mol Biol 218:365–373PubMedCrossRefGoogle Scholar
  73. Snapir Z, Keren-Paz A, Bercovich Z, Kahana C (2008) Biochem J 410:613–619PubMedCrossRefGoogle Scholar
  74. Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ (1999) Mol Cell 4:1005–1015PubMedCrossRefGoogle Scholar
  75. Suzuki T, He Y, Kashiwagi K, Murakami Y, Hayashi S, Igarashi K (1994) Proc Natl Acad Sci USA 91:8930–8934PubMedCrossRefGoogle Scholar
  76. Takeuchi J, Chen H, Hoyt MA, Coffino P (2008) Biochem J 410:401–407Google Scholar
  77. Tang H, Ariki K, Ohkido M, Murakami Y, Matsufuji S, Li Z, Yamamura K (2009) Genes Cells 14:79–87Google Scholar
  78. Tate WP, Poole ES, Dalphin ME, Major LL, Crawford DJ, Mannering SA (1996) Biochimie 78:945–952PubMedCrossRefGoogle Scholar
  79. Tosaka Y, Tanaka H, Yano Y, Masai K, Nozaki M, Yomogida K, Otani S, Nojima H, Nishimune Y (2000) Genes Cells 5:265–276PubMedCrossRefGoogle Scholar
  80. Vimaladithan A, Farabaugh PJ (1994) Mol Cell Biol 14:8107–8116PubMedGoogle Scholar
  81. Wang X, Levic S, Gratton MA, Doyle KJ, Yamoah EN, Pegg AE (2009) J Biol Chem 284:930–937PubMedCrossRefGoogle Scholar
  82. Weiss RB, Dunn DM, Atkins JF, Gesteland RF (1987) Cold Spring Harb Symp Quant Biol 52:687–693PubMedCrossRefGoogle Scholar
  83. Weiss RB, Huang WM, Dunn DM (1990) Cell 62:117–126PubMedCrossRefGoogle Scholar
  84. Yamaguchi Y, Takatsuka Y, Matsufuji S, Murakami Y, Kamio Y (2006) J Biol Chem 281:3995–4001PubMedCrossRefGoogle Scholar
  85. Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B (2005) FEBS Lett 579:559–66PubMedCrossRefGoogle Scholar
  86. Zhu C, Lang DW, Coffino P (1999) J Biol Chem 274:26425–26430Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.BioSciences InstituteUniversity College CorkCorkIreland
  2. 2.Department of Human GeneticsUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Molecular BiologyThe Jikei University School of MedicineTokyoJapan

Personalised recommendations